• Title/Summary/Keyword: Proteasome

Search Result 203, Processing Time 0.024 seconds

The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi

  • Liu, Tong-Bao;Xue, Chaoyang
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • The ubiquitin-proteasome system is one of the major protein turnover mechanisms that plays important roles in the regulation of a variety of cellular functions. It is composed of E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 ubiquitin ligases that transfer ubiquitin to the substrates that are subjected to degradation in the 26S proteasome. The Skp1, Cullin, F-box protein (SCF) E3 ligases are the largest E3 gene family, in which the F-box protein is the key component to determine substrate specificity. Although the SCF E3 ligase and its F-box proteins have been extensively studied in the model yeast Saccharomyces cerevisiae, only limited studies have been reported on the role of F-box proteins in other fungi. Recently, a number of studies revealed that F-box proteins are required for fungal pathogenicity. In this communication, we review the current understanding of F-box proteins in pathogenic fungi.

Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy

  • Ji, Chang Hoon;Kwon, Yong Tae
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.441-449
    • /
    • 2017
  • Proteolysis in eukaryotic cells is mainly mediated by the ubiquitin (Ub)-proteasome system (UPS) and the autophagy-lysosome system (hereafter autophagy). The UPS is a selective proteolytic system in which substrates are recognized and tagged with ubiquitin for processive degradation by the proteasome. Autophagy is a bulk degradative system that uses lysosomal hydrolases to degrade proteins as well as various other cellular constituents. Since the inception of their discoveries, the UPS and autophagy were thought to be independent of each other in components, action mechanisms, and substrate selectivity. Recent studies suggest that cells operate a single proteolytic network comprising of the UPS and autophagy that share notable similarity in many aspects and functionally cooperate with each other to maintain proteostasis. In this review, we discuss the mechanisms underlying the crosstalk and interplay between the UPS and autophagy, with an emphasis on substrate selectivity and compensatory regulation under cellular stresses.

Bacteroides fragilis Toxin Induces Cleavage and Proteasome Degradation of E-cadherin in Human Breast Cancer Cell Lines BT-474 and MCF7 (인간 유방암 세포주 BT-474와 MCF7에서 Bacteroides fragilis Toxin에 의한 E-cadherin 분절과 프로테아좀에 의한 분해)

  • Da-Hye KANG;Sang-Hyeon YOO;Ju-Eun HONG;Ki-Jong RHEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.1
    • /
    • pp.37-44
    • /
    • 2023
  • Enterotoxigenic Bacteroides fragilis (ETBF) has been reported to promote colitis and colon cancer through the secretion of B. fragilis toxin (BFT), a zinc-dependent metalloprotease. In colonic epithelial cells, BFT induces the cleavage of E-cadherin into the 80 kDa ectodomain and the 33 kDa membrane-bound intracellular domain. The resulting membrane-tethered fragment is then cleaved by γ-secretase forming the 28 kDa E-cadherin intracellular fragment. The 28 kDa cytoplasmic fragment is then degraded by an unknown mechanism. In this study, we found that the 28 kDa E-cadherin intracellular fragment was degraded by the proteasome complex. In addition, we found that this sequential E-cadherin cleavage mechanism is found not only in colonic epithelial cells but also in the human breast cancer cell line, BT-474. Finally, we report that staurosporine also induces E-cadherin cleavage in the human breast cancer cell line, MCF7, through γ-secretase. However, further degradation of the 28 kDa E-cadherin intracellular domain is not dependent on the proteasome complex. These results suggest that the BFT-induced E-cadherin cleavage mechanism is conserved in both colonic and breast cancer cells. This observation indicates that ETBF may also play a role in the carcinogenesis of tissues other than the colon.

Effects of a Proteasome Inhibitor on Cardiomyocytes in a Pressure-Overload Hypertrophy Rat Model: An Animal Study

  • Kim, In-Sub;Jo, Won-Min
    • Journal of Chest Surgery
    • /
    • v.50 no.3
    • /
    • pp.144-152
    • /
    • 2017
  • Background: The ubiquitin-proteasome system (UPS) is an important pathway of proteolysis in pathologic hypertrophic cardiomyocytes. We hypothesize that MG132, a proteasome inhibitor, might prevent hypertrophic cardiomyopathy (CMP) by blocking the UPS. Nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and androgen receptor (AR) have been reported to be mediators of CMP and heart failure. This study drew upon pathophysiologic studies and the analysis of $NF-{\kappa}B$ and AR to assess the cardioprotective effects of MG132 in a left ventricular hypertrophy (LVH) rat model. Methods: We constructed a transverse aortic constriction (TAC)-induced LVH rat model with 3 groups: sham (TAC-sham, n=10), control (TAC-cont, n=10), and MG132 administration (TAC-MG132, n=10). MG-132 (0.1 mg/kg) was injected for 4 weeks in the TAC-MG132 group. Pathophysiologic evaluations were performed and the expression of AR and $NF-{\kappa}B$ was measured in the left ventricle. Results: Fibrosis was prevalent in the pathologic examination of the TAC-cont model, and it was reduced in the TAC-MG132 group, although not significantly. Less expression of AR, but not $NF-{\kappa}B$, was found in the TAC-MG132 group than in the TAC-cont group (p<0.05). Conclusion: MG-132 was found to suppress AR in the TAC-CMP model by blocking the UPS, which reduced fibrosis. However, $NF-{\kappa}B$ expression levels were not related to UPS function.

RNAi Suppression of RPN12a Decreases the Expression of Type-A ARRs, Negative Regulators of Cytokinin Signaling Pathway, in Arabidopsis

  • Ryu, Moon Young;Cho, Seok Keun;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.375-382
    • /
    • 2009
  • The 26S proteasome is a 2-MDa complex with a central role in protein turn over. The 26S proteasome is comprised of one 20S core particle and two 19S regulatory particles (RPs). The RPN12a protein, a non-ATPase subunit of the 19S RP, was previously shown to be involved in cytokinin signaling in Arabidopsis. To further investigate cellular roles of RPN12a, RNAi transgenic plants of RPN12a were constructed. As expected, the 35S:RNAi-RPN12a plants showed cytokinin signaling defective phenotypes, including abnormal formation of leaves and inflorescences. Furthermore, RNAi knock-down transgenic plants exhibited additional unique phenotypes, including concave and heart-shape cotyledons, triple cotyledons, irregular and clustered guard cells, and defects in phyllotaxy, all of which are typical for defective cytokinin signaling. We next examined the mRNA level of cytokinin signaling components, including type-A ARRs, type-B ARRs, and CRFs. The expression of type-A ARRs, encoding negative regulators of cytokinin signaling, was markedly reduced in 35S:RNAi-RPN12a transgenic plants relative to that in wild type plants, while type-B ARRs and CRFs were unaffected. Our results also indicate that in vivo stability of the ARR5 protein, a negative regulator of cytokinin signaling, is mediated by the 26S proteasome complex. These results suggest that RPN12a participates in feedback inhibitory mechanism of cytokinin signaling through modulation of the abundance of ARR5 protein in Arabidopsis.

TNFα-induced Down-Regulation of Estrogen Receptor α in MCF-7 Breast Cancer Cells

  • Lee, Sang-Han;Nam, Hae-Seon
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.285-290
    • /
    • 2008
  • Estrogen-induced proliferation in estrogen receptor (ER)-positive breast cancer cells is primarily mediated through two distinct intracellular receptors, $ER{\alpha}$ and $ER{\beta}$. Although tumor necrosis factor alpha ($TNF{\alpha}$) and $E2/ER{\alpha}$ are known to exert opposing effects on cell proliferation in MCF-7 cells, the mechanism by which $TNF{\alpha}$ antagonizes $E2/ER{\alpha}$-mediated cell proliferation is not well understood. The present study suggests that reduced cell survival in response to $TNF{\alpha}$ treatment in MCF-7 cells may be associated with the down-regulation of $ER{\alpha}$ protein. The decrease in $ER{\alpha}$ protein level was accompanied by an inhibition of $ER{\alpha}$ gene transcription. Cell viability was decreased synergistically by the combined treatment with $ER{\alpha}$-siRNA and $TNF{\alpha}$. Furthermore, pretreatment of cells with the PI3-kinase (PI3K)/ Akt inhibitor, LY294002, markedly enhanced $TNF{\alpha}$-induced down-regulation of the $ER{\alpha}$ protein, suggesting that the PI3K/Akt pathway might be involved in control of the $ER{\alpha}$ level. Moreover, down-regulation of $ER{\alpha}$ by $TNF{\alpha}$ was not inhibited in cells that were pretreated with the proteasome inhibitors, MG132 and MG152, which suggests that proteasome-dependent proteolysis does not significantly influence $TNF{\alpha}$-induced down-regulation of $ER{\alpha}$ protein. In contrast, the effect of the PI3K/Akt inhibitor on $ER{\alpha}$ was blocked in cells that were treated with LY294002 in the presence of the proteasome inhibitors. Collectively, our findings show that the $TNF{\alpha}$ may partly regulate the growth of MCF-7 breast cancer cells through the down-regulation of $ER{\alpha}$ expression, which is primarily mediated by a PI3K/Akt signaling.

CHIP promotes the degradation of mutant SOD1 by reducing its interaction with VCP and S6/S6' subunits of 26S proteasome

  • Choi, Jin-Sun;Lee, Do-Hee
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Previously we showed that CHIP, a co-chaperone of Hsp70 and E3 ubiquitin ligase, can promote the degradation of mutant SOD1 linked to familial amyotrophic lateral sclerosis (fALS) via a mechanism not involving SOD1 ubiquitylation. Here we present evidence that CHIP functions in the interaction of mutant SOD1 with 26S proteasomes. Bag-1, a coupling factor between molecular chaperones and the proteasomes, formed a complex with SOD1 in an hsp70-dependent manner but had no direct effect on the degradation of mutant SOD1. Instead, Bag-1 stimulated interaction between CHIP and the proteasome-associated protein VCP (p97), which do not associate normally. Over-expressed CHIP interfered with the association between mutant SOD1 and VCP. Conversely, the binding of CHIP to mutant SOD1 was inhibited by VCP, implying that the chaperone complex and proteolytic machinery are competing for the common substrates. Finally we observed that mutant SOD1 strongly associated with the 19S complex of proteasomes and CHIP over-expression specifically reduced the interaction between S6/S6' ATPase subunits and mutant SOD1. These results suggest that CHIP, together with ubiquitin-binding proteins such as Bag-1 and VCP, promotes the degradation of mutant SOD1 by facilitating its translocation from ATPase subunits of 19S complex to the 20S core particle.