• 제목/요약/키워드: Prostate cancer cell

검색결과 336건 처리시간 0.031초

Dendritic Cells Induce Specific Cytotoxic T Lymphocytes against Prostate Cancer TRAMP-C2 Cells Loaded with Freeze-thaw Antigen and PEP-3 Peptide

  • Liu, Xiao-Qi;Jiang, Rong;Li, Si-Qi;Wang, Jing;Yi, Fa-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.571-578
    • /
    • 2015
  • Prostate cancer is the most common cancer in men. In this study, we investigated immune responses of cytotoxic T lymphocytes (CTLs) against TRAMP-C2 prostate cancer cells after activation by dendritic cells (DCs) loaded with TRAMP-C2 freeze-thaw antigen and/or PEP-3 peptide in vitro. Bone marrow-derived DC from the bone marrow of the C57BL/6 were induced to mature by using the cytokine of rhGM-CSF and rhIL-4, and loaded with either the freeze-thaw antigen or PEP-3 peptide or both of them. Maturation of DCs was detected by flow cytometry. The killing efficiency of the CTLs on TRAMP-C2 cells were detected by flow cytometry, CCK8, colony formation, transwell migration, and wound-healing assay. The levels of the IFN-${\gamma}$, TNF-${\beta}$ and IL-12 were measured by enzyme-linked immunosorbent assay (ELISA). Compared with the unloaded DCs, the loaded DCs had significantly increased expression of several phenotypes related to DC maturation. CTLs activated by DCs loaded with freeze-thaw antigen and PEP-3 peptide had more evident cytotoxicity against TRAMP-C2 cells in vitro. The secretion levels of IFN-${\gamma}$, TNF-${\beta}$ and IL-12, secreted by DCs loaded with antigen and PEP-3 and interaction with T cells, were higher than in the other groups. Our results suggest that the CTLs activated by DCs loaded with TRAMP-C2 freeze-thaw antigen and PEP-3 peptide exert a remarkable killing efficiency against TRAMP-C2 cells in vitro.

세포독성 평가를 통한 γ-Fe2O3 나노입자의 생체안정성 및 약물전달효율 (Biostability and Drug Delivery Efficiency of γ-Fe2O3 Nano-particles by Cytotoxicity Evaluation)

  • 이권재;안정희;신재수;김동희;유화승;조종관
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.132-136
    • /
    • 2010
  • This study examined the biostability and drug delivery efficiency of g-$Fe_2O_3$ magnetic nanoparticles (GMNs) by cytotoxicity tests using various tumor cell lines and normal cell lines. The GMNs, approximately 20 nm in diameter, were prepared using a chemical coprecipitation technique, and coated with two surfactants to obtain a water-based product. The particle size of the GMNs loaded on hangamdan drugs (HGMNs) measured 20-50 nm in diameter. The characteristics of the particles were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-TEM) and Raman spectrometer. The Raman spectrum of the GMNs showed three broad bands at 274, 612 and $771\;cm^1$. A 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay showed that the GMNs were non-toxic against human brain cancer cells (SH-SY5Y, T98), human cervical cancer cells (Hela, Siha), human liver cancer cells (HepG2), breast cancer cells (MCF-7), colon cancer cells (CaCO2), human neural stem cells (F3), adult mencenchymal stem cells (B10), human kidney stem cells (HEK293 cell), human prostate cancer (Du 145, PC3) and normal human fibroblasts (HS 68) tested. However, HGMNs were cytotoxic at 69.99% against the DU145 prostate cancer cell, and at 34.37% in the Hela cell. These results indicate that the GMNs were biostable and the HGMNs served as effective drug delivery vehicles.

Ultrasound Targeted Microbubble Destruction for Novel Dual Targeting of HSP72 and HSC70 in Prostate Cancer

  • Wang, Hang-Hui;Song, Yi-Xin;Bai, Min;Jin, Li-Fang;Gu, Ji-Ying;Su, Yi-Jin;Liu, Long;Jia, Chao;Du, Lian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1285-1290
    • /
    • 2014
  • The aim was to determine whether ultrasound targeted microbubble destruction (UTMD) promotes dual targeting of HSP72 and HSC70 for therapy of castration-resistant prostate cancer (CRPC), to improve the specific and efficient delivery of siRNA, to induce tumor cell specific apoptosis, and to find new therapeutic targets specific of CRPC.VCaP cells were transfected with siRNA oligonucleotides. HSP70, HSP90 and cleaved caspase-3 expression were determined by real-time quantitative polymerase chain reaction and Western blotting. Apoptosis and transfection efficiency were assessed by flow cytometry. Cell viability assays were used to evaluate safety. We found HSP72, HSC70 and HSP90 expression to be absent or weak in normal prostate epithelial cells (RWPE-1), but uniformly strong in prostate cancerous cells (VCaP). UTMD combined with dual targeting of HSP72 and HSC70 siRNA improve the efficiency of transfection, cell uptake of siRNA, downregulation of HSP70 and HSP90 expression in VCaP cells at the mRNA and protein level, and induction of extensive tumor-specific apoptosis. Cell counting kit-8 assays showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting HSP70 therapy for PCa may be most efficacious, providng a novel, reliable, non-invasive, safe targeted approach to improve the specific and efficient delivery of siRNA, and achieve maximal effects.

Signaling Role of Adipocyte Leptin in Prostate Cell Proliferation Induced by Trichomonas vaginalis

  • Kim, Jung-Hyun;Han, Ik-Hwan;Shin, Su-Jin;Park, Sung-Yul;Chung, Hyo-Yeoung;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • 제59권3호
    • /
    • pp.235-249
    • /
    • 2021
  • Leptin is a type of adipokine mainly produced by adipocytes and reported to be overproduced in prostate cancer. However, it is not known whether it stimulates the proliferation of prostate cells. In this study, we investigated whether benign prostatic hyperplasia epithelial cells (BPH-1 cells) infected with Trichomonas vaginalis induced the proliferation of prostate cells via a leptin signaling pathway. To investigate the effect of crosstalk between adipocyte leptin and inflamed epithelial cell in proliferation of prostate cells, adipocytes 3T3-L1 cells were incubated in conditioned medium of BPH-1 cells infected with T. vaginalis (T. vaginalis-conditioned medium, TCM), and then the adipocyte-conditioned medium (ATCM) was identified to cause proliferation of prostate cells. BPH-1 cells incubated with live T. vaginalis released pro-inflammatory cytokines, and conditioned medium of these cells caused migration of adipocytes. When prostate stromal cells and BPH-1 cells were incubated with adipocyte conditioned medium containing leptin, their growth rates increased as did expression of the leptin receptor (known as OBR) and signaling molecules such as JAK2/STAT3, Notch and survivin. Moreover, blocking the OBR reduced this proliferation and the expression of leptin signaling molecules in response to ATCM. In conclusion, our findings show that inflamed BPH-1 cells infected with T. vaginalis induce the proliferation of prostate cells through leptin-OBR signaling. Therefore, it is likely that T. vaginalis contributes to prostate enlargement in BPH via adipocyte leptin released as a result of inflammation of the prostate.

Triptolide Inhibits Histone Methyltransferase EZH2 and Modulates the Expression of Its Target Genes in Prostate Cancer Cells

  • Tamgue, Ousman;Chai, Cheng-Sen;Hao, Lin;Zambe, John-Clotaire Daguia;Huang, Wei-Wei;Zhang, Bin;Lei, Ming;Wei, Yan-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5663-5669
    • /
    • 2013
  • The histone methyltransferase EZH2 (enhancer of zeste homolog 2) plays critical roles in prostate cancer (PCa) development and is a potential target for PCa treatment. Triptolide possesses anti-tumor activity, but it is unknown whether its therapeutic effect relates with EZH2 in PCa. Here we described EZH2 as a target for Triptolide in PCa cells. Our data showed that Triptolide suppressed PCa cell growth and reduced the expression of EZH2. Overexpression of EZH2 attenuated the Triptolide induced cell growth inhibition. Moreover, Triptolide treatment of PC-3 cells resulted in elevated mRNA levels of target genes (ADRB2, CDH1, CDKN2A and DAB2IP) negatively regulated by EZH2 as well as reduced mRNA levelsan of EZH2 positively regulated gene (cyclin D1). Our findings suggest the PCa cell growth inhibition mediated by Triptolide might be associated with downregulation of EZH2 expression and the subsequent modulation of target genes.

복분자 미숙과 추출물이 전립선암 세포주와 전립선비대 백서모델에 미치는 영향 (Effects of Unripe Black Raspberry Extracts on Prostate Cancer Cell Line and Rat Model of Benign Prostatic Hyperplasia)

  • 이수정;최혜란;이정현;권지웅;이희권;정종태;이태범
    • 한국식품영양과학회지
    • /
    • 제43권4호
    • /
    • pp.507-515
    • /
    • 2014
  • 본 연구는 전립선암세포주인 LNCaP 세포주와 테스토스테론으로 유도된 전립선비대 백서모델에서 복분자 추출물의 전립선비대 억제 효과를 조사하였다. 첫째, 전립선암 세포주(LNCaP)에서 복분자 미숙과 추출물의 안드로겐 관련 전립선비대 유전자 억제 효과를 조사한 결과 미숙과 50% 에탄올 추출물은 안드로겐 수용체(AR)뿐만 아니라 전립선특이항원(PSA)과 5-알파 환원 효소 type 2(5AR2)의 발현을 가장 높게 억제하였다. 또한 LNCaP 세포에 DHT로 안드로겐 관련 유전자를 유도한 후 복분자 미숙과 50% 에탄올 추출물을 처리한 결과 AR과 PSA mRNA의 발현이 억제됨을 확인하였다. 둘째, 테스토스테론을 이용하여 전립선비대를 유도한 동물모델에서 복분자 미숙과 50% 에탄올 추출물을 6주간 투여한 후 전립선비대 개선 효과를 조사한 결과, 전립선비대유발군에 복분자 미숙과 추출물을 투여한 군에서 전립선 무게, 전립선 소포의 상피세포 두께 및 면적이 감소함을 확인할 수 있었고, 전립선비대 유발 호르몬인 DHT level이 감소함을 확인할 수 있었다.

Tristetraprolin Regulates Prostate Cancer Cell Growth Through Suppression of E2F1

  • Lee, Hyun Hee;Lee, Se-Ra;Leem, Sun-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.287-294
    • /
    • 2014
  • The transcription factor E2F1 is active during G1 to S transition and is involved in the cell cycle and progression. A recent study reported that increased E2F1 is associated with DNA damage and tumor development in several tissues using transgenic models. Here, we show that E2F1 expression is regulated by tristetraprolin (TTP) in prostate cancer. Overexpression of TTP decreased the stability of E2F1 mRNA and the expression level of E2F1. In contrast, inhibition of TTP using siRNA increased the E2F1 expression. E2F1 mRNA contains three AREs within the 3'UTR, and TTP destabilized a luciferase mRNA that contained the E2F1 mRNA 3'UTR. Analyses of point mutants of the E2F1 mRNA 3'UTR demonstrated that ARE2 was mostly responsible for the TTP-mediated destabilization of E2F1 mRNA. RNA EMSA revealed that TTP binds directly to the E2F1 mRNA 3'UTR of ARE2. Moreover, treatment with siRNA against TTP increased the proliferation of PC3 human prostate cancer cells. Taken together, these results demonstrate that E2F1 mRNA is a physiological target of TTP and suggests that TTP controls proliferation as well as migration and invasion through the regulation of E2F1 mRNA stability.

Menin Enhances Androgen Receptor-Independent Proliferation and Migration of Prostate Cancer Cells

  • Kim, Taewan;Jeong, Kwanyoung;Kim, Eunji;Yoon, Kwanghyun;Choi, Jinmi;Park, Jae Hyeon;Kim, Jae-Hwan;Kim, Hyung Sik;Youn, Hong-Duk;Cho, Eun-Jung
    • Molecules and Cells
    • /
    • 제45권4호
    • /
    • pp.202-215
    • /
    • 2022
  • The androgen receptor (AR) is an important therapeutic target for treating prostate cancer (PCa). Moreover, there is an increasing need for understanding the AR-independent progression of tumor cells such as neuroendocrine prostate cancer (NEPC). Menin, which is encoded by multiple endocrine neoplasia type 1 (MEN1), serves as a direct link between AR and the mixed-lineage leukemia (MLL) complex in PCa development by activating AR target genes through histone H3 lysine 4 methylation. Although menin is a critical component of AR signaling, its tumorigenic role in AR-independent PCa cells remains unknown. Here, we compared the role of menin in AR-positive and AR-negative PCa cells via RNAi-mediated or pharmacological inhibition of menin. We demonstrated that menin was involved in tumor cell growth and metastasis in PCa cells with low or deficient levels of AR. The inhibition of menin significantly diminished the growth of PCa cells and induced apoptosis, regardless of the presence of AR. Additionally, transcriptome analysis showed that the expression of many metastasis-associated genes was perturbed by menin inhibition in AR-negative DU145 cells. Furthermore, wound-healing assay results showed that menin promoted cell migration in AR-independent cellular contexts. Overall, these findings suggest a critical function of menin in tumorigenesis and provide a rationale for drug development against menin toward targeting high-risk metastatic PCa, especially those independent of AR.

Prostatic acid phosphatase의 전립선 암에서의 역할 (Roles of Prostatic Acid Phosphatase in Prostate Cancer)

  • 공훈영;이학종;변종회
    • 생명과학회지
    • /
    • 제21권6호
    • /
    • pp.893-900
    • /
    • 2011
  • Prostatic acid phosphatase (PAP)는 전립선 암의 진단에 널리 사용되는 표지자로서 1935년 처음으로 동정되었고 인체 전립선에 가장 많이 존재하는 탈 인산화효소이다. PAP는 prostate epithelial cells에서 합성되는 전립선 특이적인 효소로서, 산성 환경에서 효소활성을 띠는 acid phosphatase 그룹에 속한다. PAP는 전립선액에 풍부히 존재하여 수정, 정자부족증, 만성통증의 감소에 관여한다. 그러나 가장 눈에 띄는 기능은 ERK1/2와 MAPK 경로에 관계된 HER-2와 PI3P의 탈 인산화를 유도하여 세포 성장 신호를 억제하고 전립선 암의 억제자로 작용하는 것이다. 최근 PAP DNA 백신을 이용하는 임상시험이 현재 진행 중이고, PAP를 이용한 immunotherapy를 통해 전립선 암을 치료하는 방법이 FDA의 승인을 받아 시행되고 있다. 이러한 PAP의 임상적 중요성에도 불구하고 현재까지 PAP의 분자적 조절기작에 대한 이해는 제한적이라 PAP에 대한 많은 연구가 필요한 실정이다. PAP는 NF-${\kappa}B$, TNF-${\alpha}$, IL-1 및 androgen과 androgen receptor에 의하여 promoter region이 조절된다고 알려졌다. 본 총설에서는 현재까지 밝혀진 PAP 유전자 및 단백질의 특징들과 더불어 전립선 암에서의 PAP의 기능, 발현 조절, 역할들을 종합하였다.

Primary 인체 전립선 암세포에서 Resveratrol의 Apoptosis 유도 효과 (Resveratrol Induces Apoptosis in Primary Human Prostate Cancer Cells)

  • 강혜인;김재용;조현동;박경욱;강점순;서권일
    • 한국식품영양과학회지
    • /
    • 제39권8호
    • /
    • pp.1119-1125
    • /
    • 2010
  • 본 연구에서는 resveratrol을 전립선 암 치료제로의 활용 가능성을 조사하기 위하여 primary 인체 전립선 암세포에 대한 resveratrol의 성장억제 효과 및 그 기전에 대하여 조사 하였다. Resveratrol은 RC-58T/h/SA#4 세포에서 농도 및 시간에 의존적으로 세포의 증식을 억제하였으며, $IC_{50}$ 값은 암세포인 RC-58T/h/SA#4, LNCaP, PC-3에서는 각각 245, 320, $340\;{\mu}M$, 전립선 정상세포인 RWPE-1에서는 $982\;{\mu}M$로 나타나 정상세포에서보다는 암세포에서 그 독성이 크게 나타났다. 또한 resveratrol에 의해 유도된 세포 사멸은 핵 응축, sub-G1 함량 증가 및 DNA 분절 현상이 나타나 apoptosis를 유도함을 알 수 있었다. Resveatrol은 caspase-8, -9 및 effector casapse-3 활성을 농도 의존적으로 증가시켰으며, caspase 저해제인 z-VAD-fmk로 caspase의 처리 시 resveratrol에 의한 apoptosis 유도 현상이 유의적으로 감소되어 resveratrol에 의한 RC-58T/h/SA#4 세포의 apoptosis 유도에 caspase가 중요한 역할을 하고 있음을 확인하였다. Resveratrol에 의해 anti-apoptotic 인자인 Bcl-2 및 Bid 단백질의 발현은 감소하였으나, pro-apoptotic 인자인 Bax 단백질 발현은 변화가 없었다. 따라서 본 연구는 resveratrol이 RC-58T/h/SA#4세포에서 caspase 의존형 미토콘드리아 경로에 의해 유도되며, resveratrol은 전립선암 치료제로서 사용 가능성을 시사한다.