• 제목/요약/키워드: Prostaglandin E receptor(s)

검색결과 16건 처리시간 0.019초

Sequential anti-inflammatory and osteogenic effects of a dual drug delivery scaffold loaded with parthenolide and naringin in periodontitis

  • Rui Chen;Mengting Wang;Qiaoling Qi;Yanli Tang;Zhenzhao Guo;Shuai Wu;Qiyan Li
    • Journal of Periodontal and Implant Science
    • /
    • 제53권1호
    • /
    • pp.20-37
    • /
    • 2023
  • Purpose: Our pilot study showed that a 3-dimensional dual drug delivery scaffold (DDDS) loaded with Chinese herbs significantly increased the regenerated bone volume fraction. This study aimed to confirm the synergistic anti-inflammatory and osteogenic preclinical effects of this system. Methods: The targets and pathways of parthenolide and naringin were predicted. Three cell models were used to assess the anti-inflammatory effects of parthenolide and the osteogenic effects of naringin. First, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) and the bone mineral density (BMD) of surgical defects were measured in a rat model of periodontitis with periodontal fenestration defects. Additionally, the mRNA expression levels of matrix metallopeptidase 9 (MMP9) and alkaline phosphatase (ALP) were measured. Furthermore, the number of inflammatory cells and osteoclasts, as well as the protein expression levels of tumor necrosis factor-alpha (TNF-α) and levels of ALP were determined. Results: Target prediction suggested prostaglandin peroxidase synthase (PTGS2) as a potential target of parthenolide, while cytochrome P450 family 19 subfamily A1 (CYP19A1) and taste 2 receptor member 31 (TAS2R31) were potential targets of naringin. Parthenolide mainly targeted inflammation-related pathways, while naringin participated in steroid hormone synthesis and taste transduction. In vitro experiments revealed significant antiinflammatory effects of parthenolide on RAW264.7 cells, and significant osteogenic effects of naringin on bone marrow mesenchymal stem cells and MC3T3-E1 cells. DDDS loaded with parthenolide and naringin decreased the CEJ-ABC distance and increased BMD and ALP levels in a time-dependent manner. Inflammation was significantly alleviated after 14 days of DDDS treatment. Additionally, after 56 days, the DDDS group exhibited the highest BMD and ALP levels. Conclusions: DDDS loaded with parthenolide and naringin in a rat model achieved significant synergistic anti-inflammatory and osteogenic effects, providing powerful preclinical evidence.

LSP로 유도된 RAW 264.7 대식세포에서 TLR4/NF-κB와 CXCL12/CXCR4 경로 억제를 통한 DATS의 항염증 효과 (Anti-inflammatory effects of DATS via suppression of cross talk between the TLR4/NF-κB and CXCL12/CXCR4 pathways in LSP-stimulated RAW 264.7 macrophages)

  • 정용태;황병수;김민진;신수영;오영택;김철환;엄정혜;이승영;최경민;정진우;조표연
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.113-113
    • /
    • 2019
  • Diallyl trisulfide (DATS) is an organic polysulfide compound found in garlic. Although certain studies have demonstrated that DATS possesses strong anti-inflammatory activity, the underlying molecular mechanisms remain largely unresolved. In this study, we examined whether DATS exerts anti-inflammatory activity and investigated the possible mechanisms. Our results indicated that DATS significantly suppressed the lipopolysaccharide (LPS)-induced release of nitric oxide (NO) and prostaglandin E2 by inhibiting inducible NO synthase and cyclooxygenase-2 expression at the transcriptional and post-transcriptional levels in RAW 264.7 macrophages. DATS also down-regulated Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 expression, and inhibited nuclear translocation of nuclear transcription factor-kappa B (NF-${\kappa}B$) in LPS-stimulated 264.7 macrophages. Furthermore, we found that these inhibitory effects of DATS were associated with the inhibition of chemokine receptor (CXCR4) and ligand (CXCL12) expression, and reactive oxygen species generation. Overall, the present data indicated that DATS had anti-inflammatory effects on LPS-activated macrophages, possibly via inhibiting the TLR4/NF-kB and/or chemokine signaling pathways, and DATS could be a potential drug therapy for inflammation and its associated diseases.

  • PDF

떡쑥 추출물의 항염증 및 항알러지 효과 (Anti-Inflammatory and Anti-allergic Effects of Gnaphalium affine Extract)

  • 노경백;이정아;박준호;정광선;정은선;박덕훈
    • 대한화장품학회지
    • /
    • 제43권2호
    • /
    • pp.103-114
    • /
    • 2017
  • 떡쑥(Gnaphalium affine D. Don, GA)은 동아시아 지역에서 식용으로 사용되고 있으며, 예로부터 전통적인 민간요법 약재로 사용되어 왔다. 현재 떡쑥 추출물(GA extract, GAE)의 항산화 활성과 항보체 활성 등은 알려져 있으나, 항염과 항알러지 효능 및 그 작용 기작은 자세히 알려져 있지 않다. 본 연구에서는 염증 매개인자인 산화질소, 프로스타글란딘 $E_2$, Toll-유사수용체 4, 에오탁신-1, 히스타민의 활성화에 대한 GAE의 저해효과를 평가하였다. 본 연구를 통해, GAE는 유도성 산화질소 합성효소와 COX-2의 발현을 저해함을 확인하였으며, 이를 통해 산화질소와 프로스타글란딘 $E_2$의 생성을 저해함을 확인하였다. GAE는 LPS로부터 유도된 Toll-유사수용체 4의 발현에도 영향을 미치는 것을 확인하였으며, A23187로부터 유도되는 비만세포의 히스타민 방출의 억제에도 효과적으로 작용하는 것을 확인하였다. 또한 IL-4로부터 유도된 에오탁신-1의 생성도 효과적으로 억제하는 결과를 확인하였다. 이상의 결과로부터 GAE는 항염증과 항알러지 효능을 가진다고 사료되며, 향후 항염증 및 항알러지 화장품 원료로서의 이용가능성을 보였다.

Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk

  • Lee, M.T.;Lin, W.C.;Lin, L.J.;Wang, S.Y.;Chang, S.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권7호
    • /
    • pp.1167-1179
    • /
    • 2020
  • Objective: This study was conducted to fathom the underlying mechanisms of nutrition intervention and redox sensitive transcription factors regulated by Antrodia cinnamomea fermented product (FAC) dietary supplementation in broiler chickens. Methods: Four hundreds d-old broilers (41±0.5 g/bird) assigned to 5 groups were examined after consuming control diet, or control diet replaced with 5% wheat bran (WB), 10% WB, 5% FAC, and 10% FAC. Liver mRNA expression of antioxidant, inflammatory and lipid metabolism pathways were analyzed. Prostaglandin E2 (PGE2) concentration in each group were tested in the chicken peripheral blood mononuclear cells (cPBMCs) of 35-d old broilers to represent the stress level of the chickens. Furthermore, these cells were stimulated with 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) and lipopolysaccharide (LPS) to evaluate the cell stress tolerance by measuring cell viability and oxidative species. Results: Heme oxygenase-1, glutathione S-transferase, glutamate-cysteine ligase, catalytic subunit, and superoxide dismutase, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that regulates the above antioxidant genes were all up-regulated significantly in FAC groups. Reactive oxygen species modulator protein 1 and NADPH oxygenase 1 were both rather down-regulated in 10% FAC group as comparison with two WB groups. Despite expressing higher level than control group, birds receiving diet containing FAC had significantly lower expression level in nuclear factor-kappa B (NF-κB) and other genes (inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, nucleotide-binding domain, leucine-richcontaining family, pyrin domain-containing-3, and cyclooxygenase 2) involving in inflammatory pathways. Additionally, except for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase that showed relatively higher in both groups, the WB, lipoprotein lipase, Acetyl-CoA carboxylase, fatty acid synthase, fatty acid binding protein, fatty acid desaturase 2 and peroxisome proliferator-activated receptor alpha genes were expressed at higher levels in 10% FAC group. In support of above results, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. H2O2 and NO levels induced by LPS and AAPH in cPBMCs were compromised in FAC containing diet. In 35-d-old birds, PGE2 production in cPBMCs was also suppressed by the FAC diet. Conclusion: FAC may promote Nrf2 antioxidant pathway and positively regulate lipid metabolism, both are potential inhibitor of NF-κB inflammatory pathway.

Effects of a Tetramethoxyhydroxyflavone on the Expression of Inflammatory Mediators in LPS-Treated Human Synovial Fibroblast and Macrophage Cells

  • Yoon, Do-Young;Cho, Min-Chul;Kim, Jung-Hee;Kim, Eun-Jin;Kang, Jeong-Woo;Seo, Eun-Hee;Shim, Jung-Hyun;Kim, Soo-Hyun;Lee, Hee-Gu;Oh, Goo-Taeg;Hong, Jin-Tae;Park, Joo-Won;Kim, Jong-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.686-694
    • /
    • 2008
  • The inhibitory effects of 5,6,3',5'-tetramethoxy 7,4'-hydroxyflavone (labeled as p7F) were elucidated on the productions of proinflammatory cytokines as well as inflammatory mediators in human synovial fibroblasts and macrophage cells. p7F inhibited IL-1${\beta}$ or TNF-${\alpha}$ induced expressions of inflammatory mediators (ICAM-1, COX-2, and iNOS). p7F also inhibited LPS-induced productions of nitric oxide and prostaglandin $E_2$ in RAW 264.7 cells. In order to investigate whether p7F would inhibit IL-1 signaling, p7F was added to the D10S Th2 cell line (which is responsive to only IL-1${\beta}$ and thus proliferates), revealing that p7F inhibited IL-1${\beta}$-induced proliferation of D10S Th2 cells in a dose-response manner. A flow cytometric analysis revealed that p7F reduced the intracellular level of free radical oxygen species in RAW 264.7 cells treated with hydrogen peroxide. p7F inhibited IkB degradation and NF-${\kappa}$B activation in macrophage cells treated with LPS, supporting that p7F could inhibit signaling mediated via toll-like receptor. Taken together, p7F has inhibitory effects on LPS-induced productions of inflammatory mediators on human synovial fibroblasts and macrophage cells and thus has the potential to be an anti-inflammatory agent for inhibiting inflammatory responses.

치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과 (Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells)

  • 이영경;김철환;정대원;이기원;오영택;김정일;정진우
    • 한국자원식물학회지
    • /
    • 제35권5호
    • /
    • pp.565-573
    • /
    • 2022
  • 치주조직에 존재하는 주요한 세포의 한 형태인 인체 치은섬유아세포는 다양한 구강유해세균으로부터 염증이 유발되어지며, 그중 대표적으로 치주염 원인균인 P. gingivalis의 내독소인 LPS-PG로부터 염증성 자극에 반응하여 다양한 염증매개 물질을 분비한다. 본 연구에서는 치주염을 일으키는 주요한 원인균 중 하나인 P. gingivalis로 부터 분리한 LPS-PG를 이용하여 인체 치은섬유아세포주인 HGF-1 세포에 염증을 유도한 후 LRE에 대한 항염증 및 항산화 효과를 분석하였다. 실험 결과, LRE는 LPS-PG 유도에 따라 iNOS에 의한 NO 생성과 COX-2에 의한 PGE2와 같은 염증 매개 인자의 발현 및 생성 억제와 함께 염증성 싸이토카인(TNF-α, IL-1β및 IL-6)의 생성 또한 억제하였다. 신호전달계에서 염증성 전사인자의 발현 경로를 확인하기 위하여 TLR4/Myd88/NF-κB의 활성을 확인한 결과, LRE 처리에 따라 농도 의존적으로 억제되는 것을 확인하였다. 또한 산화 환원 효소로 항염증효과를 나타내는 것으로 알려진2상 효소 중 하나인 NQO-1과 이의 전사인자인 Nrf2를 분석 한 결과 LRE 처리에 의해 효소의 활성이 높아지는 것을 확인할 수 있었다. 결론적으로 LRE는 TLR4/Myd88/NF-κB 신호전달 경로를 억제하고 NQO1/Nrf2 활성을 유도함으로써 HGF-1 세포에서 LPS-PG에 의해 유도된 염증을 억제하는 것으로 사료되며, 향후 LRE는 식·의약품 소재 개발에서 치주질환 개선의 가능성이 있는 후보물질이 될 수 있을 것으로 사료된다.