• Title/Summary/Keyword: Propulsive performance

Search Result 110, Processing Time 0.036 seconds

Experimental Study on Performance of a Propulsive Nozzle with a Blower Piping System

  • Sakamoto, Masahiko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • The characteristics of the thrust for ship propulsion equipment directly driven by air compressed by pressure fluctuation in a blower piping system are investigated. The exhaust valve is positioned upon the air ejection hole in the discharge pipe in order to induce the large-scale pressure fluctuation, and the effects of the valve on the pressure in the pipes and the thrust for the propulsive nozzle are examined. The pressure in the pipes decreases immediately after the valve is opened, and it increases just before the valve is closed. The thrust for the propulsive nozzle monotonically increases with increasing number of revolutions and depth. The interfacial wave in the nozzle appears in the frequency of approximately 4Hz, and it is important for the increase of the thrust to synchronize the opening-closing cycle for the exhaust valve with the generation frequency of the interfacial wave. The finite difference lattice Boltzmann method is helpful to investigate the characteristics of the flow in the nozzle.

A Fundamental Study on the Power Prediction Method of Ship by using the Experiment of Small Model (소형 모형선을 이용한 실선마력추정에 대한 연구)

  • Ha, Yoon-Jin;Lee, Young-Gill
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.231-238
    • /
    • 2014
  • In this study, the self-propulsion tests are performed in INHA towing tank. And the effective wake characteristics of the KVLCC2 and the KCS models are compared by the experimental results. The form factor is independent of Reynolds number. To estimate the hydrodynamic performance of a full scale ship, the form factor is determined to consider attendant on Reynolds number. In this research, the power predictions are carried out considering the form factor difference of model and full scale ship. The results of this research could be used as one of the fundamental data to the powering performance prediction.

A Numerical Study for Improvement of the Speed-performance of a Ship with Flow Control Flat Plate (유동제어평판을 가진 선박의 속도성능 향상에 관한 수치적 연구)

  • Park, Dong-Woo;Choi, Hee-Jong;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.268-278
    • /
    • 2009
  • The present study focused on evaluation for the performance of the Flow Control Flat Plate (FCFP) attached in the stern side of the ship. The important function of this FCFP is to enhance the resistance performance through the decrease of stern sinkage and the propulsive performance by the adjustment of inflow velocities in the propeller plane. Two different hull forms were considered to identify the effects of the FCFP. The attachment position, the angle and the size of the FCFP were studied in this numerical simulation. In this paper, the roles of the FCFP were intended to analyze fully through the numerical interpretation.

Performance Improvement of Weis-Fogh Type Ship's Propulsion Mechanism Using Spring Type Elastic Wing

  • Ro, Ki-Deok;Cheon, Jung-Hui;Kim, Won-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.52-61
    • /
    • 2009
  • This experiment was conducted in attempt of improving hydrodynamic efficiency of the propulsion mechanism by installing a spring to the wing so that the opening angle of the wing in one stroke can be changed automatically, compared to the existing method of fixed maximum opening angle in Weis-Fogh type ship propulsion mechanism. Average thrust coefficient was almost fixed with all velocity ratio with the prototype, but with the spring type, thrust coefficient increased sharply as velocity ratio increased. Average propulsive efficiency was larger with bigger opening angle in the prototype, but in the spring type, the one with smaller spring coefficient had larger value. In the range over 1.0 in velocity ratio where big thrust can be generated, spring type had more than twice of propulsive efficiency increase compared to the prototype.

A Kinetic Analysis of the Side Propulsion Task with Preparatory Motions (사전 동작을 이용한 좌우 추진 과제의 운동역학적 분석)

  • Kim, Yong-Woon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.187-196
    • /
    • 2007
  • The purpose of this study was to find the most effective movement pattern from three different types of preparatory movement(squat, countermovement and hopping) in sideward responsive propulsion task, which had the time constraint to complete the performance. 7 healthy subjects participated in left and right side movement task by an external signal, which required the subject to perform the task as fast as possible. Mechanical output and joint kinetics focusing on the lower extremities were analyzed. The results were as follows. In spite of the shortest duration in propulsive phase, the hopping condition showed no difference with other conditions in the work output done and take-off velocity. It resulted from the greatest power output generated during the propulsive phase. A significant difference was found for joint moment and joint power according to the movement conditions. The joint moment and joint power for the countermovement and hopping conditions were larger than those in the squat condition. This was speculated to be due to the extra power that could be generated by the pre-stretch of muscle in preparation for the propulsion. The hopping condition which had substantially more pre-stretch load in the preparatory eccentric phase produced considerably more power than countermovement condition in the propulsive concentric phase. Furthermore during the hopping a large amount of joint moment and joint power could be produced in a shorter time. Therefore it was deemed that the hopping movement is an effective type of preparatory movement which takes much more advantage of the pre-stretch than any other movement.

Pitch Directional Swimming Control of Multi-Legged Biomimetic Underwater Robot (CALEB10) (다족형 생체모방 수중 로봇(CALEB10)의 Pitch 유영 제어)

  • Lee, Hansol;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.228-238
    • /
    • 2017
  • The CALEB10 is a multi-legged biomimetic underwater robot. In the last research, we developed a swimming pattern named ESPG (Extended Swimming Pattern Generator) by observing diving beetle's swimming actions and experimented with a positive buoyancy state in which CALEB10 floats on the water. In this paper, however, we have experimented with CALEB10 in a neutral buoyancy state where it is completely immersed in water for pitch motion control experiment. And we found that CALEB10 was unstably swimming in the pitch direction in the neutral buoyancy state and analyzed that the reason was due to the weight proportion of the legs. In this paper, we propose a pitch motion control method to mimic the pitch motion of diving beetles and to solve the problem of CALEB10 unstably swimming in the pitch direction. To control the pitch motion, we use the method of controlling additional joints while swimming with the ESPG. The method of obtaining propulsive force by the motion of the leg has a problem of giving propulsive force in the reverse direction when swimming in the surge direction, but this new control method has an advantage that a propulsive moment generated by a swimming action only on a target pitch value. To demonstrate validity this new control method, we designed a dynamics-based simulator environment. And the control performance to the target pitch value was verified through simulation and underwater experiments.

Computational Analysis of KCS Model with an Equalizing Duct

  • Ng'aru, Joseph Mwangi;Park, Sunho;Hyun, Beom-soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.247-256
    • /
    • 2021
  • In order to minimize carbon emissions and greenhouse gas, the Energy Efficiency Design Index (EEDI) has become a major factor to be considered in recent years in a ship's design and operation phases. Energy-Saving Devices (ESDs) improve the EEDI of a vessel and make them environmentally friendly. In this research, the performance of an equalizing duct-type ESD installed upstream of a Korea Research Institute of Ships & Ocean Engineering (KRISO) Container Ship (KCS) model's propeller was investigated by computational fluid dynamics (CFD). Open-source CFD libraries, OpenFOAM, were used for computational analysis of the KCS with and without the ESD to verify the performance improvement. The flow field near the stern region and propulsive coefficients were considered for comparison. The results showed a considerable improvement when an ESD was used on the model. Using different sizes of the duct, the performance of the ESD was also compared. It was observed that with an increased duct size, the propulsive performance was improved.

The Ground Test and Evaluation to Verify Engine Performance of Sea-Star I (해성I의 공기흡입식 엔진 성능 검증을 위한 지상시험평가)

  • Jung, Jae-Won;Kim, Jong-Jin;Park, Sang-Woo;Kim, Sang-Yong;Kim, Moo-Gon;Kim, Tae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.381-384
    • /
    • 2009
  • The Air-breathing engine like Sea-Star I is a second propulsive force generator to fly to the target after the booster generating initial propulsive force is separated. The performance of Sea-Star I engine should be verified because the cruise missile controls direction and altitude during flight, so ground engine test is executed before flight test. This these presents evaluation method of ground engine test to verify performance of Sea-Star I's engine.

  • PDF

Experimental Study on Local Flow Characteristics and Propulsive Performance of Two KRISO 300K VLCCs with Different Stern Shapes (선미선형을 변화시킨 두 척의 KRISO 300K VLCC 모형주위의 유동과 저항추진 특성에 대한 실험적 연구)

  • Wu-Joan Kim;Suak-Ho Van;Do-Hyun Kim;Chun-Ju Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.11-20
    • /
    • 2000
  • The flow characteristics around the stern region of two VLCCs with the same forebody and slightly different afterbody are investigated along with propulsive performance of the ship. The local mean flow measurements and the resistance and self-propulsion tests are carried out in the towing tank for the two VLCC hull forms. The measured results clearly show the formation of bilge vortices and their effect on propulsive efficiency. The comparisons are made for the two VLCC hull forms and the relation between stern framelines and bilge vortex strength is explored. Experimental data can provide a good test case to validate the accuracy of numerical methods and turbulence model of CFD codes for ship flow calculation.

  • PDF

A Study on the Performance Comparison of Energy Saving Devices for Handy-size Bulk Carrier (산적화물선의 에너지 저감 장치들의 성능 비교에 관한 연구)

  • Kim, Eok-Kyu;Lee, Kang-Ki;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The environmental regulations for CO2 emissions from the ship have been established recently, and fuel oil price has been increased continuously. In order to overcome these circumstances, Energy Saving Devices (ESDs) have been developed continuously to reduce the fuel oil consumption and improve the propulsive efficiency. This paper describes the trial performance of PBCF (Propeller Boss Cap Fins), SCHNEEKLUTH duct, Asymmetric rudder bulb and Mewis duct applied to handy-size bulk carriers. As a result, SCHNEEKLUTH duct is more effective than other energy saving devices at the reducing the fuel oil consumption and the improvement of the propulsive efficiency. In addition, it is confirmed that SCHNEEKLUTH duct is really effective in the vibration of the deck house. And the fuel oil consumption can also be reduced through main engine de-rating.