• 제목/요약/키워드: Propulsion shafting system

검색결과 74건 처리시간 0.023초

선박용 추진축계 비틀림진동 실험장치의 소개 (Experimental Equipment for Torsional Vibration of Marine Propulsion Shafting)

  • 김상환;김지근;이돈출;박성현
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.149-153
    • /
    • 2005
  • Marine Propulsion shafting system coupled with medium diesel engine forms multi-degree torsional vibration system which consist of many inertia masses such as crank, flywheel, propeller and sometimes gear system is adopted additionally for the purpose of improving propeller's propulsion efficiency or connecting with PTO/PTI. The periodic excitation torques generated by combustion pressure in cylinder and reciprocating masses induce various kinds of vibrations in this shafting system. If the frequency of this excitation torques is equal to the natural frequency of the shafting, the amplitude of the torsional vibration increases steeply and the damage of crankshaft or gears may be occurred by that. This frequency is called critical speed. When making a plan for shafting system, it is important for this frequency to be expected exactly and not to be in commonly used speed. For this reason, this paper introduces the experimental equipment for torsional vibration of marine propulsion shafting system and describes the theoretic and the experimental methods to look for natural frequencies.

  • PDF

공기부양선의 추진 및 부양축계 종진동 해석에 관한 연구 (A Study on the Analysis of Axial Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle)

  • 손선태;길병래;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.768-776
    • /
    • 2007
  • In this study, axial vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including wood composite material of air propeller. aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis calculated the axial natural frequencies and mode shapes of the shafting system taking into account an equivalent mass-elastic model for shafting system as well as the three-dimensional models for propeller blade and fan impeller. Such a flexible shafting system has very intricate vibrating characteristics and especially, axial natural frequencies of flexible components such as propeller blade and impeller of lift fan can be lower to the extent that causes a resonance in the range of operating revolution. The results for axial vibration analysis are presented and compared with the results of axial vibration test for lift fan conducted during Sea Trial.

A Study on the Measurement and Analysis of Whirling Vibration Behavior of Marine Propulsion Shafting System using Gap-sensors

  • Sun, Jin-Suk;Han, Tae-Min;Lee, Kang-Ki;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.130-135
    • /
    • 2015
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational rpm range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering from operating rpm up to target rpm, however, the range is un-measurable generally. In order to resolve the measurement issue, this study shows the measuring method and the assessment method of relevant natural frequency of whiling vibration by using measured harmonic order component of whirling vibration.

주파수 영역에서 비틀림진동에 의한 저속 2행정 디젤엔진을 갖는 추진축계의 피로강도 해석 (Fatigue Strength Analysis of Propulsion Shafting System with Two Stroke Low Speed Diesel Engine by Torsional Vibration in Frequency Domain)

  • 김상환;이돈출
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.416-422
    • /
    • 2007
  • Prime movers in most large merchant ships adapt two stroke low speed diesel engine which has higher efficiency, mobility and durability. However, severe torsional vibration in these diesel engines may be induced by higher fluctuation of combustion pressures. Consequently, it may lead sometimes to propulsion shafting failure due to the accumulated fatigue stresses. Shaft fatigue strength analysis had been done traditionally in time domain but this method is complicated and difficult in analysing bi-modal vibration system such as the case of cylinder misfiring condition. In this paper authors introduce an assessment method of fatigue strength estimation for propulsion shafting system with two stroke low speed diesel engine in the frequency domain.

  • PDF

디젤기관 추진축계의 설계를 위한 비틀림 진동해석 전산프로그램의 개발 (Development of Computer Program of Torsional Vibration Analysis for Design of Diesel Engine Propulsion Shafting)

  • 최명수;문덕홍;심재문
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.23-28
    • /
    • 2003
  • It is very important to analyze the torsional vibration for the propulsion shafting of ship. The authors have developed the transfer stiffness coefficient method(TSCM) as a vibration analysis algorithm. The concept of the TSCM is based on the successive transfer of stiffness coefficient. The effectiveness of the TSCM was verified through many applications. In this paper, the TSCM is applied to the torsional free vibration analysis for the propulsion shafting of an actual shin with a diesel engine. In order to calculate the additional torsional stresses of the propulsion shafting the torsional forced vibration for the shafting is analyzed by using both the modal analysis method and the results of the torsional free vibration analysis by the TSCM. The accuracy of the present method is confirmed by comparing with the vibration analysis results of engine maker.

  • PDF

실베스터-전달강성계수법에 의한 실습선 새동백호 추진축계의 비틀림 자유진동 해석 (Torsional Free Vibration Analysis of Propulsion Shafting of Training Ship SAEDONGBAEK by Sylvester-Transfer Stiffness Coefficient Mehtod)

  • 김명준;왕우경;여동준;최명수
    • 동력기계공학회지
    • /
    • 제22권6호
    • /
    • pp.11-19
    • /
    • 2018
  • In this study, the authors examine the propulsion shafting of the training ship SAEDONGBAEK and perform modeling to analyze the torsional free vibration of the shafting. In this paper, the computational algorithm for analyzing the torsional free vibration of the shafting with a reduction gear is formulated by the sylvester-transfer stiffness coefficient method (S-TSCM) that is a recently developed and a powerful method in free vibration analysis. According to the state of the controllable pitch propeller of the shafting and the temperature of the elastic coupling, the torsional free vibration of the shafting is performed by the S-TSCM. The authors examine the changes of the natural frequencies and natural modes which are the results of the torsional free vibration analysis of the shafting.

점성댐퍼를 갖는 엔진 축계의 안정성 해석 및 비선형 비틀림강제진동 (A Study on the Stability Analysis and Non-linear Forced Torsional Vibration for the Dngine Shafting System with Viscous Damper)

  • 박용남;하창우;김의간;전효중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.282-287
    • /
    • 1996
  • The non-linear torsional vibrations of the propulsion shafting system with viscous damper are considered. The motion is modeled by non-linear differential equations of second order. the equivalent system is modeled by two mass softening system with Duffing's oscillator. The steady state response of a equivalent system is analyzed for primary resonance only. Harmonic balance method as a non-linear vibration analysis technique is used. Jump phenomena are explained. The primary unstable region obtained by the Mathieu equation is investigated. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisons with both data, it was confirmed that Duffing's oscillator can be used as a analysis method in the modeling of the propulsion shafting system attached viscous damper with non-linear stiffness.

  • PDF

전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석 (Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor)

  • 로날드 디 바로;이돈출
    • 한국소음진동공학회논문집
    • /
    • 제24권9호
    • /
    • pp.667-674
    • /
    • 2014
  • 선박의 추진축계는 외부 변동 부하에 의해서 축계 손상을 일으킬 수 있다. 이러한 추진축계의 동역학적인 특성은 운전 중에 일어나는 공진을 견딜 수 있거나 또는 피하도록 설계 및 최적화 해야 한다. 이러한 공진은 대빙급 선박의 추진시스템의 설계에 요구되는 프로펠러에서 유체역학적인 상호작용에 기인한다. 추진축계는 프로펠러와 대빙 사이의 상호관계로 인한 과도부하와 시스템의 공진에 의해서 진지한 응력을 받게 된다. 이 논문은 대빙이 적용된 극지 연구 선박에서 추진축계의 과도비틀림 진동응답을 검토하고자 한다. 추진축계는 전기모터로 구동되는 원동기, 탄성커플링 기어 및 프로펠러로 구성되어 있다. 이론적인 해석은 프로펠러의 대빙 부하를 기진력으로 과도비틀림진동 해석을 수행하였다. 그리고 실선에서 비틀림 진동을 계측하고 공진점을 확인하고 이를 이용하여 추진축계 한계 설계 토크에 대한 적용된 평가 요소를 국제선급연합 규정과 비교하였다. 전기모터를 갖는 추진축계에서 공진을 초래하는 탄성커플링의 강성 선정의 영향을 검토하였다.

대빙구조선박의 추진축계설계에 대한 연구 (A study on the propulsion shafting design of ice class vessel)

  • 김양곤;오주원;김용철;김의간
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.183-183
    • /
    • 2012
  • As as result of development of new voyage route, especially Baltic seas, it is necessary for the design to meet ice class requirements as vessels continue to increase in this route. For this reason Finish-Swedish ice class has recently amended a regulation on the propulsion shafting design and engine output required for the ships which will be navigable in the brash ice channels broken by ice-breakers in Baltic seas. Therefore, this study shows the appropriate calculation methods for the design of engine output and propulsion shafting system based on ice class requirements.

  • PDF

점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동 (Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper)

  • 박용남;송성옥;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.50-58
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

  • PDF