• Title/Summary/Keyword: Propulsion device

Search Result 283, Processing Time 0.025 seconds

Modeling of Mesh Screen for Use in Surface Tension Tank Using Flow-3d Software (Flow-3d를 이용한 표면장력 탱크용 메시 스크린 모델링)

  • Kim, Hyuntak;Lim, Sang Hyuk;Yoon, Hosung;Park, Jeong-Bae;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.984-990
    • /
    • 2017
  • Mesh screen modeling and liquid propellant discharge simulation of surface tension tank were performed using commercial CFD software Flow-3d. $350{\times}2600$, $400{\times}3000$ and $510{\times}3600$ DTW mesh screen were modeled using macroscopic porous media model. Porosity, capillary pressure, and drag coefficient were assigned for each mesh screen model, and bubble point simulations were performed. The mesh screen model was validated with the experimental data. Based on the screen modeling, liquid propellant discharge simulation from PMD tank was performed. NTO was assigned as the liquid propellant, and void was set to flow into the tank inlet to achieve an initial volume flow rate of liquid propellant in $3{\times}10^{-3}g$ acceleration condition. The intial flow pressure drop through the mesh screen was approximately 270 Pa, and the pressure drop increased with time. Liquid propellant discharge was sustained until the flow pressure drop reached approximately 630 Pa, which was near the estimated bubble point value of the screen model.

  • PDF

The Starting Characteristics of the Steady Ejector-Diffuser System

  • Gopalapillai, Rajesh;Kim, Heuy-Dong;Matsuo, Shigeru;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.680-685
    • /
    • 2008
  • The ejector is a simple device which can transport a low-pressure secondary flow by using a high-pressure primary flow. In general, it consists of a primary driving nozzle, a mixing section, and a diffuser. The ejector system entrains the secondary flow through a shear action generated by the primary jet. Until now, a large number of researches have been made to design and evaluate the ejector systems, where it is assumed that the ejector system has an infinite secondary chamber which can supply mass infinitely. However, in almost all of the practical applications, the ejector system has a finite secondary chamber implying steady flow can be possible only after the flow inside ejector has reached an equilibrium state after the starting process. To the authors' best knowledge, there are no reports on the starting characteristics of the ejector systems and none of the works to date discloses the detailed flow process until the secondary chamber flow reaches an equilibrium state. The objective of the present study is to investigate the starting process of an ejector-diffuser system. The present study is also planned to identify the operating range of ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the one and only condition in which an infinite mass entrainment is possible is the generation of a recirculation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point.

  • PDF

The Trend Analysis of Propulsion System for Railway Vehicle Using Patent Analysis (특허분석을 통한 철도차량용 추진제어장치 기술 분석)

  • Han, Young-Jae;Lee, Su-Gil;Park, Chan-Kyoung;Kim, Young-Guk;Bae, Chang-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.131-138
    • /
    • 2018
  • In this study, we investigated the trend of technological development in major countries related to the propulsion equipment of railway vehicles. The propulsion system is the main equipment of electric vehicles. A lot of time and investment are required in order to ensure the development of technology. Therefore, developed countries have maximized their effort to develop technologies with safety, reliability, and convenience of maintenance. They have also done their utmost to prevent technology transfer to other countries after the development of new technologies. For example, Toshiba of Japan developed a new 3,300V/1,500 A class IGBT power device, but was reluctant to export it to foreign countries in order to protect this technology. In this study, we analyzed the patents applied for related to propulsion control systems and presented the direction of development during the technical development of these systems. The patent analysis of the core technologies was conducted using the Thomson Innovation DB. We examined the number of patents applied for by country, year and major applicant. As a result of the analysis, it was found that the proportion of patent applications per country was in the order of China, 48%, Europe 16.6%, and the United States 14.9%. The patent situation of the top 10 principal applicants revealed that (the top three were?) ABB 14%, GE 13%, and CRRC 12%. At the same time, we also conducted a qualitative analysis of the level of technical development by evaluating such factors as the influence index, quotation, market securing power and citation. Based on the result of the patent analysis, we presented the direction of technical development of the propulsion control equipment of railway vehicles. Based on the analysis results, it was found that domestic applicants considerably reduced their efforts to protect their patents from foreign companies. Nowadays, most of the electric motors used in Korea are induction motors. In advanced countries, permanent magnet electric motors are employed in new railway lines. Therefore, intensive investment is needed in new developments.

A Study of Separation Mechanism in Ball Type Separated Bolt (볼타입 분리볼트의 분리현상 연구)

  • Lee, Yeung-Jo;Koo, Song-Hoe;Jang, Hong-Bin;Lee, Bang-Eop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.62-67
    • /
    • 2011
  • Launching tube is a kind of case to protect the guided weapons from external environments and conducted as a guide when they are fired. The guided weapons have been firmly kept at the launching tube and transferred, and would be separated at the required time when they are fired To meet the aim, it has been used explosive bolts which are reliable and efficient mechanical fastening devices having the special feature of a built-in release. The disadvantage of explosive bolt lies in that it is based on the high explosive effect of a pyrotechnic charge. When the explosive bolt is ignited, there are some bad effects; a flame, fragments and pyro-shock. Because of these bad effects there are many restriction to use bolt as joining devices to precision guided weapons. To solve these problems, the aim of the present work is to invent the ball-type separation bolt which is a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. A standard pressure cartridge can moreover be easily integrated inside the device according to the present work and this with no modification to its structure. The present work was represented quantitatively the margin of separation safety and analysed separation mechanism in ball type separating bolt to perform the dynamic separation test.

A Development of Integrated Control System for Platform Equipments of Unmanned Surface Vehicle (USV) (무인수상정 플랫폼 장비의 통합 제어 시스템 개발)

  • Hwang, Hun-Gyu;Kim, Hyun-Woo;Kim, Bae-Sung;Woo, Yun-Tae;Shin, Il-Sik;Shin, Ji-Hwan;Lee, Young-Jin;Choi, Byung-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1611-1618
    • /
    • 2017
  • Recently, the development for USV-related technologies are actively growing up in military domain. The USV (unmanned surface vehicle) conducts various missions for national defense at maritime environment. For succeed the missions, the USV essentially needs an automatic and remote control platform which includes propulsion system, steering system, control system, power system and so on. In this paper, we developed an integrated control system for the platform equipments and verified effectiveness of the developed system. To do this, we designed a system architecture and implemented a main control system that processes and controls platform equipments by received command. Also we developed components of designed architecture such as engine control device, water-jet control device and power control device. For test and verify the developed system, we designed and made a test-bed of engine and water-jet with related parts, and proceeded a basin test for verifying the developed system based on the test-bed.

Regulations on Wheelchair Power Assist Add-ons in Korea, Europe and United States (한국, 미국, 유럽의 휠체어동력보조장치 규제 현황)

  • Ki-Won Choi;Suk-Min Lee;Inhyuk Moon;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.525-531
    • /
    • 2023
  • In Korea, which is entering a super-aged society, the number of elderly patients who have difficulty walking independently is expected to increase rapidly, and it is necessary to develop wheelchair products with various functions to improve the quality of life of people with walking disabilities. Recently, wheelchair power assist devices that provide propulsion power by being attached to a manual wheelchair has been developed and is entering the domestic and global markets. In this study, we compared and analyzed the process of obtaining medical device certification for wheelchair power assist devices in Korea, the United States, and Europe. In Korea, a Class 2 medical device certification process was developed in 2021, and in the US FDA, it corresponds to Class 2 like the existing electric wheelchair and must pass the 510k certification process. In the case of Europe, it is uniquely regulated as Class I, and the CE mark can be attached through a relatively easy self-declaration of conformity. The Korean medical device industry, which is struggling with MDR certification, a new European medical device regulation, should pay attention to the relatively easy entry into the global market for wheelchair power assist products.

Fuel cell system for SUAV using chemical hydride - II. Lightweight fuel cell propulsion system (화학수소화합물을 이용한 소형 무인항공기용 연료전지 시스템 연구 - II. 경량 연료전지 추진 시스템)

  • Hong, Ji-Seok;Park, Jin-Gu;Sung, Myeong-Hun;Jeon, Chang-Soo;Sung, Hong-Gye;Shin, Seock-Jae;Nam, Suk-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.233-239
    • /
    • 2013
  • A 100 W fuel cell system using chemical storage method has been applied for a propulsion system of the SUAV(Small Unmanned Aerial Vehicle). A fuel cell and battery have been combined for both the small/light hydrogen generation control system and the hybrid power supply system. A small hydrogen generation device was implemented to utilize NaBH4 aqueous solution and dead-end type PEMFC system, which were evaluated on the ground and by the flight tests. The system pressurized at a 45kpa stably operates and get higher fuel efficiency. The pressure inside of the hydrogen generation control system was maintained at between 45 kPa and 55 kPa. The 100W fuel cell system satisfies the required weight and power consumption rate as well as the propulsion system, and the fuel cell system performance was demonstrated through flight test.

Design of Planetary Gear Reducer Driving part to Possible Disadhesion from Electric Wheelchair (전동 휠체어에 탈·부착이 가능한 유성기어 감속기 구동부 설계)

  • Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.9-13
    • /
    • 2022
  • Electric wheelchairs, the output from the motor is mainly applied to a speed reducer using a power transmission device such as a belt or a chain. However, although a speed reducer using a belt or chain is a simple device, it occupies a lot of space and has a space limitation, so it is not suitable for an electric wheelchair driving part. However, since the speed reducer of the planetary gear type is decelerated on the same axis, the volume can be reduced, so the space constraint is less than that of the belt or chain type reducer. Therefore, in this study, a driving part that can obtain great propulsion with a speed reducer using a planetary gear type was developed through a study on the driving part of a wheelchair that can be switched between manual and electric. Accordingly, the tooth shape of the planetary gear applied to the reducer was designed using the Kisssoft program. In addition, the drive part was designed to be applicable to the existing wheelchair wheels, and the mechanism was optimized for the manual/electric switching principle and operation principle of the drive part. Based on the research contents, the final design and manufacture of the wheelchair reducer drive unit in the form of a planetary gear having one sun gear, two planetary gears and one ring gear was carried out.

Fuel cell system for SUAV using chemical hydride - I. Lightweight hydrogen generation and control system (화학수소화합물을 이용한 소형 무인항공기용 연료전지 시스템 연구 - I. 경량 수소 발생 및 제어 장치)

  • Hong, Ji-Seok;Jung, Won-Chul;Kim, Hyeon-Jin;Lee, Min-Jae;Jeong, Dae-Seong;Jeon, Chang-Soo;Sung, Hong-Gye;Shin, Seock-Jae;Nam, Suk-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.226-232
    • /
    • 2013
  • A compact hydrogen generation device of fuel cell system using chemical hydride storage technique was designed to fit the propulsion device requirement of a small unmanned aerial vehicle(SUAV). For high efficient, compact, and lightweight hydrogen generation control device, the Co-B catalyst hydrogen conversion rate by $NaBH_4$ aqueous solution flux is measured so that the proper amount of Co-B catalyst for maximum hydrogen generation of 100W stack was proposed. A compact hydrogen generation device is controlled by pump's on/off using its own internal pressure and consumes fuel in high efficiency through a dead-end type fuel cell. The fuel cell system has stable operation for a planed flight profile. The system operates up to maximum 7 hours and at least 4 hours for tough flight profiles.

A Study on Hydraulic Stable Analysis of The Natural Small River (친환경 소하천의 수리적 안정성 분석에 관한 연구)

  • Kim, Tae-Kyoung;Rhee, Kyoung-Hoon;Sun, Byoung-Jin;Choi, Cheong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.3
    • /
    • pp.187-194
    • /
    • 2007
  • It started road constructions around river in 1990s. These maintenances concentrate on city river. Because river lives no living things and men don't come near there. But in spite of these river environment go to rack, river maintenances still keep on using preexistence method since 1990s. Only a part of city river environment maintenances consider environmental ability of passive river, river maintenance of a purpose of flood control still don't consider in the concrete. Because propulsion device that consider environment ability of passive river and possible application techniques don't complete. In accordance, A natural river maintenance needs absolutly a series of river projects. Because a natural river maintenance prevents a damage of environment ability. This study is to assume the flood really happened and to carry out the flood damage simulation needed in overflow simulation about the inundated zone. Also, This study examine unstable part about the hydraulic characteristic as velocities, stream power, shear, hydraulic depth, flow area in basin. And this study applied the HEC-RAS(river analysis system) model to predict flood overflow in youngsan river basin. Project flood is used the return period 100 year and inputed data that was calculated in intensity figures of illumination.