• Title/Summary/Keyword: Propulsion Shaft

Search Result 180, Processing Time 0.024 seconds

Application of Foil Air Bearing to Small Gas Turbine Engine for UAV (무인기용 소형 가스터빈 엔진에 대한 포일 공기 베어링 적용 연구)

  • Kim, Kyeong-Su;Lee, Si-Woo;Kim, Seung-Woo;Lee, In
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.261-266
    • /
    • 2003
  • Foil air bearing, which is a noncontact bearing utilizing viscosity of operating fluid and elastic deformation of foil structure, has several advantages over rolling element bearings in terms of oilless environment, long life, high speed operation, and high temperature application over $500^{\circ}C$ . Recently advanced researches are actively being performed for the application to the extreme temperature such as gas turbines, as well as conventional small turbo machinery. In this paper, the principle of foil air bearing is introduced and a feasibility study to adopt a foil bearing as the turbine bearing of 65 HP turbo shaft engine, which is under development for UAV, is presented.

  • PDF

The Atomization Mechanism and Spray Characteristics of Drum Type Rotary Atomizer (드럼형 회전연료노즐의 미립화 기구 및 분무특성 연구)

  • Lee, Dong-Hun;Choi, Hyun-Kyung;Choi, Seong-Man;You, Gyung-Won;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • The atomization phenomena and spray characteristics of drum type rotary atomizer using centrifugal force from high rotational speed of gas turbine engine shaft were studied through rotary atomizer modeling analysis and experimental method. A test rig for rotary atomization that has range of $5,000{\sim}40,000\;rpm$ was used to make similarity for high speed rotating shaft. Spray visualization methodology and Phase Doppler Anemometry were also used to investigate the atomization mechanism and spray characteristics. We found that the rotating fuel spray has unique breakup process and we have to make breakup point earlier through increasing rotating speed to improve atomization performance.

A Curvic-Coupling Development for the Turbopump Application (터보펌프용 커빅커플링의 개발)

  • Jeong, Eun-Hwan;Yoon, Suk-Hwan;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.22-25
    • /
    • 2009
  • Development of a curvic-coupling was presented in this paper. The research covers design, structural analysis, hot-temperature-torsion-test, curvic-coupling applied proto-type turbine disk manufacturing, and assembly test of a curvic-coupling rotor system for the turbopump application. Curvic-coupling was designed based on the Gleason-standard-tooth shape. The load capability of the designed curvic coupling was validated by the structural analysis and hot-temperature-torsion-test. A proto-type turbine disk which had adopted designed curvic-coupling was manufactured, assembled and tested to reveal that shaft-disk assembly run-outs in axial and radial directions were much smaller than the design requirements. The development will be finalized after spin test of shaft-disk assembly in near future.

  • PDF

A Study on Performance Diagnostics of Turbo-Shaft Engine For SUAV Using Gas Path Analysis (GPA 기법을 적용한 스마트 무인기용 터보축 엔진의 성능진단에 관한 연구)

  • Lee, Eun-Young;Roh, Tae-Seong;Choi, Dong-Whan;Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.82-89
    • /
    • 2006
  • Recently operation and maintenance cost of gas turbine engines has been issued as a major parameter in terms of designing and manufacturing. Accordingly, the conception that the maintenance and repair of an engine has to be conducted in assembled condition has been spreaded out. However, it is possible only if the prediction of the engine performance is clearly identified. In this study, therefore, a diagnostic code of the engine performance has been developed by using GPA(Gas Path Analysis) and Fuzzy Logic which can analyze the engine performance and estimate the health parameters. The prediction of the quantitative performance deterioration of the established model of the turbo-shaft engine for SUAV has been achieved in a satisfied level compared to that obtained by GSP code.

Development of Test Stand for Altitude Engine Test of Reciprocating Engine (왕복동 엔진의 고도성능시험을 위한 시험장치 개발)

  • Lee, KyungJae;Yang, InYoung;Kim, ChunTaek;Kim, DongSik;Baek, Cheulwoo;Yang, GyaeByung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.563-571
    • /
    • 2017
  • Test stand for altitude engine test of reciprocating engine was designed, manufactured and validated by preliminary test and simple calculation. These test stand designed to interface with Altitude turbo-shaft engine test facility of Korea Aerospace Research Institute. Many limiting condition for altitude test of reciprocating engine are assumed and test stand was developed to satisfy those limits. Test stand design specially focused on a altitude, Mach number and fuel temperature control for reciprocating engine altitude test with smaller air and fuel flow than turbo-shaft engine.

  • PDF

Sensor Fault Detection for Small Turboshaft Engine Considering Multiple Trim Conditions (다중 트림 상태를 고려한 소형 터보샤프트 엔진의 센서 고장 검출)

  • Seong, Sang-Man;Rhee, Ihn-Seok;Ryu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.192-195
    • /
    • 2008
  • A sensor fault detection method for small turbo shaft engine considering multiple trim conditions is proposed. This engine is used in a helicopter. Firstly, under multiple trim conditions, we derive the linearized models from a nonlinear model which includes engine, rotor and feedback control loop. As a fault detection method, we adopt the Kalman filter based method. To keep continuity of estimates between the changes of trim conditions, we reconfigure the initial values of state variables at trim changes. We detect the faults with two steps that when the first filter does not alarm the faults for some sensors, the second filter is runned for other sensor. Via some simulations we show that the proposed method works well under multiple trim conditions.

  • PDF

Development of an Underwater Rope-cutter Device and Controller for Removal of Propeller and Shaft Foreign Material for Small Vessel (소형선박용 프로펠러 및 샤프트 이물질 제거를 위한 수중절단기 기구 설계 및 제어기 개발)

  • Lee, Hunseok;Oh, Jin-Seok;Choi, Sun-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.927-935
    • /
    • 2019
  • Screw-failure accidents in small ships frequently occur in coastal waters. In particular, vessels' propulsion systems are frequently coiled due to objects such as fish-nets and ropes that float on the sea. The failure of the ship's propulsion system can cause primary accidents such as ship operation delays and drifting due to loss of power; furthermore, the possibility of secondary accidents such as those involving operators in the underwater removal of rope stuck in a propeller. Ships that do not have the proper tools to solve these problems must be either lifted onto land to be repaired or divers must dive directly under the ship to solve the problem. Accordingly, some small vessels have been equipped with rope-cutter devices on the propeller shaft to prevent ship propeller system accidents in recent years; however, they are not being applied efficiently due to the cost and time of installation. To solve these problems, this study develops an underwater rope-cutter device and controller for the removal of propeller and shaft foreign material in small vessels. This device has simple structures that use the principle of a saw. Meteor gears and crank pins were used for the straight-line rotation of saw blades of the underwater rope-cutters to allow for long strokes. Furthermore, the underwater rope-cutting machines can be operated by being connected to the ship battery. The user, a non-professional, can ensure convenience and stability by applying reverse current prevention and a speed control circuit so that it can be used more conveniently and safely.

A Comparative Study of the Rules of Ship Classification Societies on the Propeller Shaft Design. (추진축설계(推進軸設計)에 관(關)한 각선급협회규칙(各船級協會規則)의 비교연구(比較硏究))

  • K.C.,Kim;J.W.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.4 no.1
    • /
    • pp.59-65
    • /
    • 1967
  • Since the screw propellers were adopted as ship propulsion devices, the replacement of propeller shaft due to damage was mostly of fatigue failure due to the alternative stresses [1],[2]. To prevent such a failure, hence, it is suggested that careful attention should be paid to account of the alternative stresses on the design stage of the propeller shafts. In connection with this fact the Ship Classification Societies' Rules are regarded simply as guidance for preliminary determination of the shaft diameter. In this paper, limiting the topic to the small and medium-sized motor ships, an evaluation of the Rules formulae to a theoretical based on Soderberg's correlation [5] between the factor of safety and the resultant stresses obtained by application of the maximum shear theory is done. For this purpose eleven (11) ships built recently in Korea were taken as a species(refer to table 2. in text). In the end the following conclusions are made: (1) In general the Rules formulae give considerably larger size of the propeller shaft diameter than that derived from theoretical calculation, that is, about 7% more in AB and BV Rules, and about 20% more in LR and KR-NK Rules. (2) LR Rule gives the largest size of all, and AB Rule is mostly closed value to the theoretical. (3) The formular of the AB Rule is considered to be of the simplest in utilization and of the reasonable.

  • PDF

A Case Study on the Lateral Vibration of Shafting System in context of forward stern tube bearing for Medium Size Container Ship (중형 컨테이너 운반선 축계장치의 선미관 선수베어링 설치 유무에 따른 횡진동 사례 연구)

  • LEE, Jae-Ung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.3
    • /
    • pp.645-652
    • /
    • 2016
  • At the initial stage of propulsion shaft design, in line with shaft alignment, an intensified consideration of lateral vibration is needed to verify its operational safety. Recently the alignment problem affecting the lateral vibration has been becoming issues. However, the theoretical method of forced lateral vibration analysis is not cleary established so far and it is about to simply limited among the classification societies and international standards to avoid the blade natural frequency resonance cpm outside of ${\pm}20%$ of engine rpm at MCR. On the other hand, longer center distance between each support bearing shows an affirmative result normally in shaft alignment analysis whereas the blade order resonance speed may cause lowering near the limitation in the aspect of lateral vibration. Therefore, it is required careful attention to engineers as described above. As a method to solve the problem, it is mainly considered that remove forward stern tube bearing. In this paper, based on a medium size container ship case, theoretical study was carried out in the context of the forward stern tube bearing. The various effects and functions of forward stern tube bearing are reviewed and evaluated. Then an guidance note to lead the conclusion is proposed.

A Study on the Torsional Vibration of propulsion Shafting System with Controllable Pitch Propeller (가변익 프로펠러를 갖는 추진축계의 비틀림진동에 관한 연구)

  • 이돈출
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.626-634
    • /
    • 1998
  • Controllable pitch propeller(CPP) is usually adopted for easy and effective engine controls of a ship in a port. Unfortunately the torsional vibration may occur by a certain variation of engine torque and the major resonance peak may exist within the maximum continuous rating(MCR) In these cases an additional stress concentration on the oil passages such as longitudinal slots notches and circular holes of an oil distributor shaft(ODS) occurs by the torsional vibration of the CPP shaft. In this paper an analysis for the fatigue limit of an ODS system of the 5S70MC engine in a crude oil carrier is done by applying FEM and empirical formulas. Furthermore the additional stress on the ODS is investigated by analyzing the torsional vibration of the shaft system and a control method in which a tuning damper is adopted is introduced in the case of the additional stress exceeds the fatigue limit. The validity of analysis method is verified by comparing the results acquired by an actual measurement of the vibratory torque for the above ODS

  • PDF