• Title/Summary/Keyword: Proportional valve

Search Result 214, Processing Time 0.027 seconds

Microcomputer Control of Electronic-Hydraulic Three-Point Hitch for Agricultural Tractors ( I ) -Computer Simulation- (농용(農用) 트랙터 3점(點)히치시스템의 마이크로컴퓨터 제어(制御)( I ) -컴퓨터 시뮬레이션-)

  • Ryu, K.H.;Yoo, S.N.;Kim, Y.S.;Kim, G.Y.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.18-26
    • /
    • 1992
  • A mechanical-hydraulic hitch control system has been adapted to most agricultural tractors. But it has various defects due to friction, inertia and hysteresis. Recently a number of electronic-hydraulic hitch control systems have been developed in several countries to improve control performance of the agricultural tractors equipped with a mechanical-hydraulic hitch control system. This study was conducted to develop a new electronic-hydraulic hitch control system using an electro-hydraulic servo valve instead of an on-off valve and to carry out computer simulation of the system. According to the result of computer simulation, the control system showed the best performance when the proportional constants were 9 and 4 for position and draft control respectively. The step and frequency responses were improved as flow rate increased.

  • PDF

Design of PI and Feedforward Controller for Precise Temperature Control of Oil Cooler System (오일쿨러의 고정밀 온도 제어를 위한 PI 및 피드포워드 제어기 설계)

  • Byun, J.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.89-95
    • /
    • 2010
  • This paper deals with design method of proportional-integral(PI) and feedforward controller for obtaining precise temperature and high energy efficiency of oil cooler system in machine tools. The compressor's speed and opening angle of an electronic expansion valve are controlled to keep reference value of temperature at oil outlet and superheat of an evaporator. Especially, the feedforward controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.l^{\circ}C$ and maximum overshoot $0.2^{\circ}C$ under abrupt disturbances.

Development of a self-leveling system for the bucket of an agricultural front-end loader using an electro hydraulic proportional valve and a tilt sensor (전자유압 비례밸브와 경사센서를 이용한 농용 프론트 로더 버켓 능동수평유지 시스템 개발)

  • Lee, Chang Joo;Ha, Jong Woo;Choi, Deok Su;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 2015
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements for farm work. However, when the tractor carries material using the bucket attached to the FEL on a sloping ground, the materials can spill or roll back over the operator due to the tilted body, thereby requiring the bucket surface to remain level at a constant value regardless of varying slopes. In this study, an active system for controlling the angle of the FEL bucket on a tractor based on the real-time measurement of ground slopes was developed to enable the bucket to constantly remain level. A FEL simulator operated based on an electro hydraulic proportional valve (EHPV) was constructed in the laboratory to develop a proportional-integral-derivative (PID) controller forming a virtual electronic control unit (ECU) on the computer, which could automatically adjust the bucket angles depending on varying input angles while sending SAE-J1939 associated messages via CAN BUS to the EHPV. The different parameter values for the PID controller due to the gravity effect of the bucket were determined using a manual PID tuning method while assuming that the tractor travels on either an ascending slope or a descending slope. The developed PID control-based self-leveling system showed a mean of steady-state errors of within $1^{\circ}$ and a mean of delayed times of ~ 0.8s when the step input of $+20^{\circ}$ was given, implying that the developed system and control algorithm would be effective in maintaining the bucket angle at a certain value. Future studies include the improvement of the control algorithm to reduce such a time delay as well as the application of the developed algorithm to the FEL mounted on a tractor tested at a testing ground.

Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve (전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

Closed loop type MCV(Main Control Valve) for Hydraulic Excavator (유압 굴삭기용 폐루프 타입 MCV(Main Control Valve))

  • Lim T.H.;Lee H.S.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.864-870
    • /
    • 2005
  • Hydraulic excavators have been popular devices in construction field because of its multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of nonlinear opening characteristics and dead zone of main control valve, oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and whole circuit are expressed graphically. Parameters and nonlinear characteristics are inputted in text style. From the simulation results, fixed spring stiffness of MCV can't satisfy accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing proportional gain is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The simulator can be used to forecastexcavator behavior when new components, new mechanical attachments, hydraulic circuit changes, and new control algorithm are applied. The simulator could be a kind of development platform for various new excavators.

  • PDF

A Numerical Study of New Vehicle Hydraulic Lift Activation by a Magneto-rheological Valve System for Precise Position Control (정밀 위치 제어를 위해 MR 밸브 시스템을 활용한 차량 유압 리프트에 대한 수치해석적 고찰)

  • Lee, TaeHoon;Park, Jhin-Ha;Choi, Seung-Bok;Shin, Cheol-Soo;Choi, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • Recently, conventional hydraulic car lift systems face the technological limitations due to a lack of height control. The demand for height controllability is required in many tasks such as wheel alignment, and requires compensation for the structural deformation of the lift caused by irregular load distribution. In order to resolve this limitation of the conventional car lift, in this work, a new type of a hydraulic vehicle lift using a magneto-rheological (MR) valve system is proposed and analyzed. Firstly, the dynamic model of vehicle lift is formulated to evaluate control performance; subsequently, an MR valve is designed to obtain the desired pressure drop required in the car lift. Next, a proportional-integral-derivative (PID) controller is formulated to achieve accurate control of the lifting height and then computer simulations are undertaken to show accurate height control performances of the proposed new car lift system.

Surgical Outcomes for Native Valve Endocarditis

  • Park, Bong Suk;Lee, Won Yong;Ra, Yong Joon;Lee, Hong Kyu;Gu, Byung Mo;Yang, Jun Tae
    • Journal of Chest Surgery
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Background: The aim of this study was to evaluate the short-term and long-term results of surgical treatment for native valve endocarditis (NVE) and to investigate the risk factors associated with mortality. Methods: Data including patients' characteristics, operative findings, postoperative results, and survival indices were retrospectively obtained from Hallym University Sacred Heart Hospital. Results: A total of 29 patients underwent surgery for NVE (affecting the mitral valve in 20 patients and the aortic valve in 9) between 2003 and 2017. During the follow-up period (median, 46.9 months; interquartile range, 19.1-107.0 months), the 5-year survival rate was 77.2%. In logistic regression analysis, body mass index (p=0.031; odds ratio [OR], 0.574; 95% confidence interval [CI], 0.346-0.951), end-stage renal disease (ESRD) (p=0.026; OR, 24.0; 95% CI, 1.459-394.8), and urgent surgery (p=0.010; OR, 34.5; 95% CI, 2.353-505.7) were significantly associated with in-hospital mortality. Based on Cox proportional hazard regression analysis, the statistically significant predictors of long-term outcomes were hypertension, ESRD, and urgent surgery. Conclusion: Surgical treatment for NVE is associated with considerable mortality. The in-hospital mortality and 5-year survival rates of this study were 13.8% and 77.2%, respectively. Underlying conditions, including hypertension and ESRD, and urgent surgery were independent risk factors for unfavorable outcomes.

Thrust Vectoring Control of Supersonic Jet Using Proportional Control Valves (비례제어밸브를 이용한 초음속 제트의 추력편향 제어)

  • Lee, MyungYeon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • An experimental study is performed to observe the characteristics of the thrust vectoring control (TVC) of the supersonic jet using proportional control valves. It is observed that three different TVC characteristics exist as the nozzle pressure ratio varies. Strong hysteresis phenomena are also observed during the valve control for a certain range of the nozzle pressure ratio. It is also noticed that the secondary chamber pressure is one of the influencing parameters for the TVC. Therefore, a control algorithm utilizing the secondary chamber pressure coefficient as a predictor is applied to achieve the stable TVC avoiding the hysteresis. Consequently, the stable TVC with the maximum deflection angle of about 20-degree has been realized using the proportional control valves.

PDA/FLC depth control of underwater vehicles with deadzone (사역대를 갖는 수중운동체의 PDA/FLC 심도제어)

  • 김종식;정재호;최중락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1080-1085
    • /
    • 1993
  • A nonlinear control algorithm for the depth control of underwater vehicles is presented. In order to consider the deadzone effect of the flow control valve, a nonlinear fuzzy logic controller (FLC) is synthesized and combined with a linear proportional-derivative-acceleration (PDA) controller, which is called, the PDA/FLC controller. And, to show the effectiveness of the PDA/FLC control system, it is compared with the linear PDA control system through computer simulation. It is found that the PDA/FLC control scheme is a suitable one to maintain the desirable depth of underwater vehicles with deadzone.

  • PDF

Spin Signals in Lateral Spin Valves with Double Nonmagnetic Bottom Electrodes

  • Lee, B.C.
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.81-84
    • /
    • 2008
  • Spin injection and detection in lateral spin valves with double nonmagnetic bottom electrodes are investigated theoretically. Spin-polarized current injected from a magnetic electrode is split to two bottom electrodes, and nonlocal spin signals between the other magnetic electrode and the nonmagnetic electrodes are calculated from drift-diffusion equations. It is shown that the spin signal is approximately proportional to the associated current in the electrode.