DOI QR코드

DOI QR Code

A Numerical Study of New Vehicle Hydraulic Lift Activation by a Magneto-rheological Valve System for Precise Position Control

정밀 위치 제어를 위해 MR 밸브 시스템을 활용한 차량 유압 리프트에 대한 수치해석적 고찰

  • Received : 2016.09.01
  • Accepted : 2016.12.29
  • Published : 2017.02.20

Abstract

Recently, conventional hydraulic car lift systems face the technological limitations due to a lack of height control. The demand for height controllability is required in many tasks such as wheel alignment, and requires compensation for the structural deformation of the lift caused by irregular load distribution. In order to resolve this limitation of the conventional car lift, in this work, a new type of a hydraulic vehicle lift using a magneto-rheological (MR) valve system is proposed and analyzed. Firstly, the dynamic model of vehicle lift is formulated to evaluate control performance; subsequently, an MR valve is designed to obtain the desired pressure drop required in the car lift. Next, a proportional-integral-derivative (PID) controller is formulated to achieve accurate control of the lifting height and then computer simulations are undertaken to show accurate height control performances of the proposed new car lift system.

최근 기존의 유압 차량 리프트는 높이제어의 어려움으로 인해 기술개발의 한계에 직면하였다. 휠 얼라이먼트나 차량의 하중 분포에 따른 미세한 불규칙적인 변형을 보상하기 위해서는 매우 정밀한 위치 제어성이 요구되고 있다. 이 연구에서는 이러한 기존 리프트 시스템의 한계를 해결하고자 매우 정교한 압력강하를 이끌어낼 수 있는 MR 밸브 시스템을 활용하여 새로운 차량 리프트를 제안하고 이에 대한 분석을 진행한다. 우선적으로 MR 밸브의 요구되는 성능을 파악하기 위해 유압 리프트의 운동방정식을 설립하고, 요구되는 압력강하를 얻기 위해 MR 밸브를 설계한다. 또한 정밀한 위치 제어 성능을 얻기 위해 PID 제어기를 설립하고, 시뮬레이션을 통해 제안된 시스템의 제어성을 검증한다.

Keywords

References

  1. Voelcker, J., 2014, 12 Billion Vehicles On World's Roads Now, 2 Billion By 2035: Report Green Car Reports Inc.
  2. Tom, D., 2012, Advanced Automotive Fault Diagnosis Routledge.
  3. Choi, S. B., Nam, M. H. and Lee, B. K., 2000, Vibration Control of a MR Seat Damper for Commercial Vehicles, Journal of Intelligent Material Systems and Structures, Vol. 11, No. 12, pp. 936-944. https://doi.org/10.1106/AERG-3QKV-31V8-F250
  4. Song, H. J., Woo, D. and Choi, S. B., 2006, Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 16, No. 7, pp. 754-761. https://doi.org/10.5050/KSNVN.2006.16.7.754
  5. Yoo, J, H. and Wereley, N, M., 2002, Design of a High-efficiency Magnetorheological Valve, Journal of Intelligent Material Systems and Structures, Vol. 13, No. 10, pp. 679-685. https://doi.org/10.1177/1045389X02013010012
  6. Ai, H. X., Wang, D. H. and Liao, W. H., 2006, Design and Modeling of a Magnetorheological Valve with Both Annular and Radial Flow Paths, Journal of Intelligent Material Systems and Structures, Vol. 17, No. 4, pp. 327-334. https://doi.org/10.1177/1045389X06055283
  7. Nguyen, Q. H., Han, Y. M., Choi, S. B. and Wereley, N. M., 2007, Geometry Optimization of MR Valves Constrained in a Specific Volume Using the Finite Element Method, Smart Materials and Structures, Vol. 16, No. 6, pp. 2242-2252. https://doi.org/10.1088/0964-1726/16/6/027