• 제목/요약/키워드: Proportional hazards models

검색결과 70건 처리시간 0.025초

Comparison of Proportional Hazards and Accelerated Failure Time Models in the Accelerated Life Tests

  • Jung, H.S.
    • International Journal of Reliability and Applications
    • /
    • 제10권2호
    • /
    • pp.101-107
    • /
    • 2009
  • In the accelerated tests, the importance of correct failure analysis must be strongly emphasized. Understanding the failure mechanisms is requisite for designing and conducting successful accelerated life test. Under this presumption, a rational method must be identified to relate the results of accelerated tests quantitatively to the reliability or failure rates in use conditions, using a scientific acceleration transform. Most widely used models for relating the results of accelerated tests quantitatively to the reliability or failure rates in use conditions are an accelerated failure time model and a proportional hazards model. The purpose of this research is to compare the usability of the accelerated failure time model and proportional hazards model in the accelerated life tests.

  • PDF

ALMOST SURE LIMITS OF SAMPLE ALIGNMENTS IN PROPORTIONAL HAZARDS MODELS

  • Lim Jo-Han;Kim Seung-Jean
    • Journal of the Korean Statistical Society
    • /
    • 제35권3호
    • /
    • pp.251-260
    • /
    • 2006
  • The proportional hazards model (PHM) can be associated with a non- homogeneous Markov chain (NHMC) in the sense that sample alignments in the PHM correspond to trajectories of the NHMC. As a result the partial likelihood widely used for the PHM is a probabilistic function of the trajectories of the NHMC. In this paper, we show that, as the total number of subjects involved increases, the trajectories of the NHMC, i.e. sample alignments in the PHM, converges to the solution of an ordinary differential equation which, subsequently, characterizes the almost sure limit of the partial likelihood.

전자건강기록 데이터 기반 욕창 발생 예측모델의 개발 및 평가 (Development and Evaluation of Electronic Health Record Data-Driven Predictive Models for Pressure Ulcers)

  • 박슬기;박현애;황희
    • 대한간호학회지
    • /
    • 제49권5호
    • /
    • pp.575-585
    • /
    • 2019
  • Purpose: The purpose of this study was to develop predictive models for pressure ulcer incidence using electronic health record (EHR) data and to compare their predictive validity performance indicators with that of the Braden Scale used in the study hospital. Methods: A retrospective case-control study was conducted in a tertiary teaching hospital in Korea. Data of 202 pressure ulcer patients and 14,705 non-pressure ulcer patients admitted between January 2015 and May 2016 were extracted from the EHRs. Three predictive models for pressure ulcer incidence were developed using logistic regression, Cox proportional hazards regression, and decision tree modeling. The predictive validity performance indicators of the three models were compared with those of the Braden Scale. Results: The logistic regression model was most efficient with a high area under the receiver operating characteristics curve (AUC) estimate of 0.97, followed by the decision tree model (AUC 0.95), Cox proportional hazards regression model (AUC 0.95), and the Braden Scale (AUC 0.82). Decreased mobility was the most significant factor in the logistic regression and Cox proportional hazards models, and the endotracheal tube was the most important factor in the decision tree model. Conclusion: Predictive validity performance indicators of the Braden Scale were lower than those of the logistic regression, Cox proportional hazards regression, and decision tree models. The models developed in this study can be used to develop a clinical decision support system that automatically assesses risk for pressure ulcers to aid nurses.

Estimation of Odds Ratio in Proportional Odds Model

  • Seo, Min-Ja;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1067-1076
    • /
    • 2006
  • Although the proportional hazards model is the most common approach used for studying the relationship of event times and covariates, alternative models are needed for occasions when it does not fit data. In the two-sample case, proportional odds models are useful for fitting data whose hazard rates converge asymptotically. In this thesis, we propose a new estimator of the relative odds ratio of the proportional odds model when two independent random samples are observed under uncensorship. We prove the asymptotic normality and consistency of the estimator by using martingale-representation. The efficiency of the proposed is assessed through a simulation study.

  • PDF

잔차에 기초한 비례위험모형의 회귀진단법 고찰 - PBC 자료를 통한 응용 연구 (Review on proportional hazards regression diagnostics based on residuas)

  • 이성임;박성현
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.233-250
    • /
    • 2002
  • Cox의 비례위험모형(proportional hazards model)은 생존자료(survival data)에 대한 회귀모형으로 경제학 및 의·공학을 비롯한 여러 응용 분야에서 가장 널리 쓰이고 있는 모형 중 하나이다. 그러나, 이 모형은 일반선헝모형에 비해 잔차 분석을 통한 회귀 진단의 연구가 널리 알려져 있지 않아, 국내의 실제 자료 분석에서는 잔차 분석에 대한 활용이 거의 이루어지지 않고 있는 실정이다. 이에 본 논문에서는 그 동안 제안된 여러 잔차들을 비교 분석하고, S-plus 프로그램을 이용한 PBC(primary biliary cirrhosis) 자료분석을 통해 각 잔차들의 의미를 고찰하고자 한다.

상수관로에 대한 시간종속형 공변수를 포함한 포괄적 비례위험모형 (The Comprehensive Proportional Hazards Model Incorporating Time-dependent Covariates for Water Pipes)

  • 박수완
    • 한국수자원학회논문집
    • /
    • 제42권6호
    • /
    • pp.445-455
    • /
    • 2009
  • 본 논문에서는 연구대상 지역의 150 mm 주철 상수관로의 첫 번째 파손으로부터 일곱 번째 파손사건에 대한 비례 위험모형을 구축하였다. 모형의 구축과정에서 공변수의 위험률에 대한 비례위험 가정을 검사하여 이를 위배할 경우 시간종속형 공변수로 모형화하였다. 그 결과 첫 번째 파손에 대해서는 관로의 제원 및 연결 방식과 급수인구가, 그리고 두 번째 파손 사건에 대해서는 급수인구의 영향이 시간에 따라 변하는 것으로 나타났다. 각 생존시간군의 기저위험률에 대한 분석으로부터 첫 번째와 두 번째 파손에 대해서는 대체적으로 파손 위험률이 시간에 따라 계속해서 증가하는 것으로 나타났으며, 세 번째 파손으로부터 일곱번째 파손사건에 대해서는 파손 위험률이 감소하다가 시간이 지나면 증가하는 욕조 모양으로 추정되었다. 또한 시간과 파손횟수에 따른 기저위험률의 변화 및 각 생존시간군의 중간생존시간으로부터 연구대상 상수관로들은 파손횟수가 증가할수록 전반적인 관로의 상태가 악화되는 것으로 판단된다. 추정된 공변수의 회귀계수와 위험비율을 이용하여 관로파손에 미치는 인자와 그 시간적 영향에 대하여 분석하였으며, 구축된 모형의 이탈잔차를 이용하여 모형의 적합도를 검증하였다.

결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델 (Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates)

  • 육태미;송주원
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.279-291
    • /
    • 2012
  • 공변량에 결측이 발생한 Cox 비례위험 모형을 적합할 때, 결측이 발생하는 개체를 모두 제거한 후 분석을 실시한다면 정보 손실에 의해 비효율적이고 결측의 발생 메커니즘이 완전 임의 결측(missing completely at random; MCAR)이 아니라면 모수의 추정값에 편향이 발생할 수 있다. Cox 비례위험 회귀모형의 공변량에 결측이 있는 경우 적용할 수 있는 여러 가지 방법들이 제안되어져 왔으나 이 분석들은 선택모델(selection model)에 기반하고 있다. 본 연구에서는 Little (1993)이 제안한 패턴-혼합 모델(pattern-mixture model)을 사용하여 Cox 비례위험 회귀모형에서 생존시간과 결측 메커니즘의 결합분포를 모델화 하고, 여러 가지 제약에 근거한 생존 분석의 결과를 비교하였다. 모의실험을 통해서 패턴-혼합 모델의 제약(restrictions)에 따른 모수 추정의 민감도를 확인하였고 결측을 무시한 채 분석한 결과 및 선택모형에 근거한 분석결과와 비교하였다. 패턴-혼합 모델의 제약에 따라 공변량의 결측으로 인한 모수 추정의 민감성 정도를 쥐백혈병 자료 예제를 통해 설명하였다.

Bayesian Variable Selection in the Proportional Hazard Model

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.605-616
    • /
    • 2004
  • In this paper we consider the proportional hazard models for survival analysis in the microarray data. For a given vector of response values and gene expressions (covariates), we address the issue of how to reduce the dimension by selecting the significant genes. In our approach, rather than fixing the number of selected genes, we will assign a prior distribution to this number. To implement our methodology, we use a Markov Chain Monte Carlo (MCMC) method.

  • PDF

Bayesian Variable Selection in the Proportional Hazard Model with Application to Microarray Data

  • Lee, Kyeong-Eun;Mallick, Bani K.
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.17-23
    • /
    • 2005
  • In this paper we consider the well-known semiparametric proportional hazards models for survival analysis. These models are usually used with few covariates and many observations (subjects). But, for a typical setting of gene expression data from DNA microarray, we need to consider the case where the number of covariates p exceeds the number of samples n. For a given vector of response values which are times to event (death or censored times) and p gene expressions(covariates), we address the issue of how to reduce the dimension by selecting the significant genes. This approach enables us to estimate the survival curve when n ${\ll}$p. In our approach, rather than fixing the number of selected genes, we will assign a prior distribution to this number. The approach creates additional flexibility by allowing the imposition of constraints, such as bounding the dimension via a prior, which in effect works as a penalty To implement our methodology, we use a Markov Chain Monte Carlo (MCMC) method. We demonstrate the use of the methodology to diffuse large B-cell lymphoma (DLBCL) complementary DNA (cDNA) data and Breast Carcinomas data.

  • PDF

Comparison between Parametric and Semi-parametric Cox Models in Modeling Transition Rates of a Multi-state Model: Application in Patients with Gastric Cancer Undergoing Surgery at the Iran Cancer Institute

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6751-6755
    • /
    • 2013
  • Background: Research on cancers with a high rate of mortality such as those occurring in the stomach requires using models which can provide a closer examination of disease processes and provide researchers with more accurate data. Various models have been designed based on this issue and the present study aimed at evaluating such models. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. Cox-Snell Residuals and Akaike Information Criterion were used to compare parametric and semi-parametric Cox models in modeling transition rates among different states of a multi-state model. R 2.15.1 software was used for all data analyses. Results: Analysis of Cox-Snell Residuals and Akaike Information Criterion for all probable transitions among different states revealed that parametric models represented a better fitness. Log-logistic, Gompertz and Log-normal models were good choices for modeling transition rate for relapse hazard (state $1{\rightarrow}state$ 2), death hazard without a relapse (state $1{\rightarrow}state$ 3) and death hazard with a relapse (state $2{\rightarrow}state$ 3), respectively. Conclusions: Although the semi-parametric Cox model is often used by most cancer researchers in modeling transition rates of multistate models, parametric models in similar situations- as they do not need proportional hazards assumption and consider a specific statistical distribution for time to occurrence of next state in case this assumption is not made - are more credible alternatives.