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ALMOST SURE LIMITS OF SAMPLE ALIGNMENTS IN
PROPORTIONAL HAZARDS MODELS

JoHAN LiM'AND SEUNG-JEAN Kim?

ABSTRACT

The proportional hazards model (PHM) can be associated with a non-
homogeneous Markov chain (NHMC) in the sense that sample alignments
in the PHM correspond to trajectories of the NHMC. As a result the partial
likelihood widely used for the PHM is a probabilistic function of the tra-
jectories of the NHMC. In this paper, we show that, as the total number
of subjects involved increases, the trajectories of the NHMC, i.e. sample
alignments in the PHM, converges to the solution of an ordinary differen-
tial equation which, subsequently, characterizes the almost sure limit of the
partial likelihood.

AMS 2000 subject classifications. Primary 62N99; Secondary 60K10.
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1. INTRODUCTION

Let T be a continuous random time associated with an event, representing
the survival or event time. The hazards rate of T is the instantaneous conditional
probability defined by

A(t) = lim P(¢ <T <t + AT > 1)/A.

The probability that the survival time is larger than ¢ is given by

P(T >t) =exp(—/0t/\(s) ds).
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Specifying the hazards rate is therefore equivalent to specifying the probabil-
ity distribution of T'. In practice, hazards rate model is more commonly used
(Kalbfleish and Prentice, 1980; Therneau and Grambsch, 2000).

In practical applications, many assumptions are made on the shape of the
hazards rate. In particular, the proportional hazards model (PHM) assumes that
the hazards rate for a subject associated with a covariate z is

Altlz) = Ao(t) exp(xB), (1.1)

where Ao(t) is called as a baseline hazards function. In other words, the propor-
tional hazards assumes that the ratio of hazards rate for two subjects associated
with covariates x; and 25 is

)\(tll‘z)
)\(tlxl)

= exp((z2 — 21)B),

which is constant over time. In particular, the semi-parametric model with an
unspecified baseline function Ag(t) is called the Cox PHM. (For more on the
model, see Cox (1972, 1975)).

In the Cox PHM, the main emphasis is placed on estimating the parameter (.
A common method for finding 8 maximizes the partial likelihood (PL) introduced
by Cox (1975). The PL for the observations {(z;,¢;), ¢ = 1,2,...,n}, where ¢; is
the observed survival time of the i** subject with the covariate z;, is

_ = exp (z;5) )
L@ =11 (zjem exp (@;0) )’ 2
where R; is the risk set at time ¢; containing all indices of survivors at that time.

The PL is different from the true likelihood function in the sense that it uses
only the information on the ranks of the data. For instance, let us consider a
two sample problem with 3 subjects in each sample. Here, sample is the set of
subjects. There are total n = 6 subjects. Three of them are associated with the
covariate £ = 0 and the other three are with & = 1, that is, a covariate indicates
the sample the subject is from. Suppose that the hazards rate of the subjects in
the sample 1 is 1 and that in the sample 2 is A. To be specific, Ag(t) = 1 and
A = exp(f) in (1.1). The following two scenarios (subjects in order) then have
the same partial likelihood:

e Scenario 1: 2, 5, (7), (9), 5, (12),

e Scenario 2: 2, 6, (8), (10), 12, (17).



ALMOST SURE LIMITS OF SAMPLE ALIGNMENTS 253

Here the numbers in parentheses represent the survival times of the subjects from
the sample 1 and the numbers not in parenthesis are those for the subjects from
sample 2. In both scenarios, the PL(])) is given by

PL(Y) = <3 f3/\) (2 —1—23)\) (1 -?—)\3)\) (1 —?—A2/\) (1 42—/\2/\) (1 —il- )\)’ (13)

Note that it depends only on the observed alignment of subjects labeled by their

sample indicators.

We first describe the NHMC model for the two-sample PHM, and then move
toward the general case. Let the two-sample PHM have n subjects for each
sample. There are total 2n subjects. We associate the PHM with a urn containing
n white and n black balls where the color represent the sample. We assume that
the weights of balls with the same color are equal but the weight of a white ball is
different from that of a black one. We draw a ball randomly from the urn without
replacement in accordance with the model: the probability of drawing a white
(black) ball is proportional to the total weights of white (black) balls which are
currently in the urn. Finally, we have an alignment of n white balls (weight = 1)
and n black balls (weight = A > 1) in the order of the time they are chosen. Let
X, be the indicator function of the event that the ball on the k** draw is white,
and let Sy = X7 + X9 + -+ + X be the number of white balls we have until
the k" draw. Given Sy = m, the probability that a white ball appears in the
(k+1)t* draw is (n — m)A/{(n —k+m) + (n — m)A}, which only depends on the
value of Sy. Thus, {Sx}2", can be identified with a non-homogeneous Markov
chain (NHMC) whose transition probability is

Sk + 1 with probability -—g-{*=5) »
Sk+1 = 14
Sk with probability o= é:;}ﬁ:fl;c)—i‘sk) 5

This, in turn, implies that the PL becomes the probability of the trajectory
{Sk}2m, of the NHMC. For example, the PL of the aforementioned two scenarios
is

PLA) =P(S1 =1, =2, S3=2, S§4=2, S5=3, S¢ =3)
=P(S1 =1)P(S; =2|S1 =1)---P(Sg = 3|S5 = 3). (1.5)

Many interesting statistics can be associated with the above NHMC. In this
paper, we characterize the almost sure limit of Sj,,/n as the solution to the
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ordinary dimensional differential equation:

(1 — Moo (t;4))A

Moot N) = TN N+ (L=t + Mt V)

dt, te0,2]  (1.6)

with the initial condition My, (0; A) = 0. To be specific, in the two sample PHM,
for every fixed A > 1,

lim sup lS[m] — Mo (t;A)| =0 almost surely. (1.7
n=®eo,2) M
The convergence in (1.7) shows that the number of white balls we have until the
Stk trial in the urn example described above is approximately nMoo(k/n; A) for
n large enough.
It is easy to show that

Moo (t;1) = = = M_ (), Vte[0,2].

t
2
and

Jim My (tA) =min (¢,1) = Moo(t), 0<t<2.
—00

Moreover, the limit function Mo (¢; A) in (1.7) is monotone in A, which is easy
to see from

L (1 — Moo (55 1)\
Meo(t; A) = /0 (1 = Moo (s; M)A + (1 — 5 + Moo(s5; A))

ds. (1.8)
Along with the monotonicity of the integrand in (1.8):

1<A <A =  MoltA) <Mt d), 0<t<2.
The lower and upper bound on My (¢; A) can now be computed as

M, (t) = 5 < Moo(t;A) <min (¢,1) = Mwo(t), 0<t<2.

N | o+

Figure 1.1 plots the almost sure limit of M, (t) for two values of A\ as well
the lower bound M (t) and the upper bound Mo (t).

A general p-sample PHM with n subjects for each sample is analogous to
a urn containing total np balls, where the balls are classified as their colors,
denoted by 1,...,p, and there are n balls for each color. The weight of a ball
for the k" color is A\, with 1 = A\; < A3 < --- < \,. Suppose that we draw a
ball randomly from the urn. Then the order of balls drawn from the urn (i.e., a
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1 2
t

FIGURE 1.1 Almost sure limit Moo (t; A) for A = 10 and A = 100 and the upper
bound Moo (t) and lower bound M__(t).

general p sample PHM) can be associated with a p-dimensional NHMC as follows.
Let Sk = (S}, S52,...,5F) where S] is the number of balls of color g that have
appeared until the k™ draw. Then, {S};", follows the p-dimensional NHMC
whose transition probability, given Sk, is

(n— Sg))‘q
2(n— Sfc))‘l’

where ¢, is the p-dimensional unit vector whose g** element is 1 and other ones

Sk+1 = Sy + e,  with probability (1.9)

are zero.
The following theorem extends the convergence in (1.7) to the p-sample PHM
and characterizes the almost sure limit of the trajectories of its NHMC.

THEOREM 1.1. Fora fited A= (A1,...,0p) ERP withl =X < A <+ <
Ap,

1
lim sup max —S’[’;t] —ME (5 M) =0 almost surely, (1.10)
n—00 410 1] 1<k<pin

where Moo (t; ) = (ML (£ 2),...,MBy(t; X)) be the solution to the ordinary p
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dimensional differential equation on |0, p|

(1= ME (8 )M
2 (1 =M (5 4)

with Moo (0,A) = (0,...,0).

dMPF_(t; ) = dt, for k=12,...,p, (1.11)

A possible application of Theorem 1.1 to statistics is the procedure to test
A = Ap against A # Ag for the two sample PHM. The suggested testing statistics

would be 1
Tn = — sup ISnt —nM t )\O)I
7 t¢(0,2]

whose almost sure limit for every A is well understood.

2. PROOF OF THEOREM 1.1

We first prove Theorem 1.1 for the two sample PHM (p = 2) and then extends
it to the general p-sample PHM.

2.1. Proof of the case p = 2

We will prove the convergence in (1.7): for every fixed A > 0,

lim sup lS[nt] - Moo(t)l =0 almost surely.
R0 ¢efo,2] ' T
From the triangular inequality
1 1 1 1
| =S = Meo(®)] < | =S — E( S| + [E(=Spua ) = M ()],

we decompose the proof into two parts:

LEMMA 2.1.

lim sup S[nt ]E(%S[nt])| — max E

1
N e0,2] | T i} E(nsk) ’ 0 almost surely,

(2.1)

and

LEMMA 2.2.

lim sup )]E( ) —Moo(t)’ :Ié%(

n0¢el0,2]

E(%Sk) ~ My (5)} ~0. (22

n
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The convergence in (1.7) is an immediate consequence of the two lemmas.

Proor orF LEMMA 2.1. The proof is based on Markov’s inequality (Billings-
ley, 1995, p. 80) along with the fact that the correlation between X; and X is
negative.

Let ¥; = X; — E(X;) and S — E(S;) = . | Vi. First, we will show the
following results on the negative dependency between Y;s: for every distinct inte-
gers 1 <1,7,k,1<2n, (i) E(Y;-Y;) <0, (ii) E(YY;) <0, (iii) E(Y2Y;Y:) <0
and (iv) E(Y;Y;YiY)) < 0.

To show (i), it suffices to show that

P(X; =11X; =1) <P(X; =1), (2.3)
which follows from
]P(:El, S 1 i I Xi = ]., Titly---rTj-1, Xj = 1)
< ]P’(xl, ey Timy, X; =0, Litlyeeer Tj—1, Xj = 1)
for any realization z1,...,T;-1, Tit1,...,T;—1. The claim (ii) can be proved as
follows:

E(Y;’Y;) = E[(X; - E(X:)°)(X; - E(X)))] = E(Y:Y;) < 0.

We can also show (iii) and (iv) in a similar way.
Now we will show that

P( 121}12); |Sk — E(Sk)| > ne) < oo, (2.4)

which results in (2.1) from the Borel Cantelli Lemma (Billingsley, 1995, Theorem
4.3). Note from the Markov inequality that

IP’(mka,x[Sk—IE(Sk)|>ne SZ ZY|>ne

k=1

I
NE

k
= R + S EEY) + YRR

k=1 i=1 itj i#j
+ Y B+ S K YYYle)} (2.5)
i ik
< ;n464{ZE ¥ + Y E(2Y?) }
= 1#]

Q
o
:NI —_

)
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where 7 # j # k (respectively, ¢ # j # k # [) in (2.5) means that ¢ # j, ¢ # k
and j # k (respectively, i # j, i #k, ¢ #1, j#k, j#! and k #1) a

ProoF OF LEMMA 2.2. Now we will show the convergence of E(Sy,/n) to
Mo (t). To do it, we first note that, by conditioning Sk, E(Sk+1/n) can be written

) (%) < x(%) + Ze[s(2)],
(1-z)A

fle) = (1-z)A+(1-£4+a)
Then, E(Sk+1/n) — Moo{(k + 1)/n} is decomposed as

o(2) -t (55 - (%) - 4

where

() - (£) 1 () v (£2)
+%E[f(%>] B %f(M"(g)) (2.6)

Using the decomposition recursively, we then have
S k+1
() () < he

where

a2 ()]
o= ) v ()« ) -2ee ()
=S el ()] om()]

It is easy to show that both A; and Ay are 0(1 / n) for every k. Thus, we only
need to show that Ajs converges to 0 as n increases.

SR C]- 1))+ Al () - 1)
sl =)+ () - ()1}

and
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which is an easy consequence of the fact that
1 A
L 1) - 1@) | < 52y o]
Therefore, for k=1,2,...,2n — 1,
k
2\ S; S; S; 1
<3 n{E LT -EQ) [+ [E(R) -M(7) |

() - (2) ) e

In (2.7), from the negative correlation between Y;’s, we have
Lo = {2 =) T
{ Vaur(z:}’)}l/2 R~ ( _1/2>, (2.8)

2n— 1 logn
3<2)\ Z (n1/2).

Thus, for every k=1,2,...,2n—1,

o(5) -a(5) 0(r)

This leads to the assertion in Lemma 2.2. O

2.2. Proof of the general p-sample PHM

We will show that for each ¢ = 1,2,...,p,

1
lim sup |=S%,—MZ(tA)| =0 almost surely. 2.9
n—oo tE[O,p] n [nt] OO( ) ( )
Let M} (t) and M,, = (ML(¢t),...,M&(t)) be the solution to the finite differ-

ence equation as in the two sample PHM. Again, we decompose the proof into
two parts:

1 m
nlg—»nolot:l[ép] S[nt] < Sﬁlt])( = max ES —]E( Sg)' =0 almost surely

(2.10)
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and

iy sup [B(2ST,,) - ML(O)| = g
The arguments for the proof of (2.10) are very similar to those for the proof of
Lemma 2.1, so we will focus only on (2.11) below.

As in (2.6), we can see that

(%) -wan ()] < e () -

IE(%SZ) - Mgo(g)( 0. (2.11)

where the function f; : R? — R is defined by

Here, let us note that

faly) = fo(z)

7AN

‘ (1- mq))‘q 25;1(3/! — T )N — (yq — mq))\q Z:;):l(l — TN
[0 (L= 2] [0 (1= )\

+1)A2
< (i—)—) ‘yl wz’ (2.12)
pn—nd iz 1<l<p
where 1 = A\; < A2 < -+ < Ay, The remaining arguments are very similar to
those used to show Lemma 2 and hence are omitted. O
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