• Title/Summary/Keyword: Proportional flow

Search Result 621, Processing Time 0.021 seconds

A Fundamental Study on Properties of Mortar Following the Stainless Steel Slag of Fineness (스테인레스 스틸 슬래그의 분말도에 따른 모르터의 물성에 관한 기초적 연구)

  • 이희두;임남기
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.69-74
    • /
    • 2002
  • The following results are achieved from a mortar flow test depending on stainless steel slag fineness, replacement ratio, and a research on material age compressive strength, strength activity index. 1. Flow is proportional to the stainless steel slag fineness within the limits of 4000~8000$\textrm{cm}^2$/g, but in the case of fineness 20000$\textrm{cm}^2$/g flow decreases at all conditions except the case of replacement ratio 10%. 2. As stainless steel slag replacement ratio increases, Mortar of flow somewhat decreases. 3. As stainless steel slag blends, compressive strength decreases, but in proportion to the increase of age, compressive strength increases. 4. As stainless steel slag replacement ratio, compressive strength decreases. 5. In the case of stainless steel slag fineness 6000$\textrm{cm}^2$/g and 20.000$\textrm{cm}^2$/g, compressive strength of revelation ratio has the maximum value when it's replacement ratio is 10%.

  • PDF

On the Flow and Pumping Characteristics of a Thermopneumatic Micropump with Electromagnetic Resistance for Electrically Conducting Fluids (전자기 저항을 이용한 열공압형 마이크로 펌프에서 통전유체의 유동 및 펌핑 특성에 관한 연구)

  • Oh, Se-Hong;Yong, Jung-Kwon;Kim, Chang-Nyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • An analysis has been conducted of the flow characteristics and pumping performance of a thermopneumatic micropump with electrically conducting fluid. In the present study, considered is a thermopneumatic micropump for electrically conducting fluids with electromagnetic resistance alternately exerted at the inlet and outlet by alternately applied magnetic fields. A model of Prescribed Deformation is used for the motion of the membrane. Here, the pumping performance of the micropump and flow characteristics of the electrically conducting fluid are investigated in the range of Hartmann number less than 30. The current numerical study shows that the net flow rate through the micropump is almost proportional to the strength of the applied magnetic field.

A Development of the electronic controlled vaporizer for low flow anesthesia (저유량 마취를 위한 전자제어식 기화기 개발)

  • Oh, Yeong-Taek;Park, Jae-Hoon;Chang, In-Bae
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.107-113
    • /
    • 2009
  • For the environmental safety of the operating room and patient healthcare, the closed type rebreathing system is widely adopted. In order to reduce the anesthesia gas during surgery, the mixing ratio of anesthesia gas with breathing air should be precisely controlled. Generally, the breathing air passes through the vaporizer to mix the anesthesia gas, but there is a difficulty in controlling the mixing ratio precisely. In this paper, the stand-alone style vaporizer is designed and the operating characteristics are investigated. The vaporizer measures the temperature and pressure in the vaporizing chamber and chamber temperature is precisely controlled by proportional controlled heater. Exact quantity of anesthesia media is feeded by PID controlled peristaltic pump and vaporized gas is mixed with breathing air flow by PWM controlled solenoid valve. The experimental result shows that the vaporizer has an excellent command following performances that it can be applied to the low flow anesthesia system.

  • PDF

Automatic Extraction of Particle Streaks for 3D Flow Measurement

  • Kawasue, Kikuhito;Ohya, Yuichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.270-273
    • /
    • 1999
  • Circular dynamic stereo has special advantages as it enables a 3-D measurement using a single TV camera and also enables a high accurate measurement without a cumbersome calibration. Annular particle streaks are recorded using this system and the size of annular streaks directly concerns to the depth from TV camera. That is, the size of annular streaks is inversely proportional to the depth from the TV camera and the depth can be measured automatically by image processing technique. Overlapped streaks can be processed also by our method. The flow measurement in a water tank is one of the applications of our system. Tracer particles are introduced into the water in a flow measurement. Since the tracer particles flow with water, three-dimensional velocity distributions in the water tank can be obtained by measuring the all movement of tracer particles. Experimental results demonstrate the feasibility of our method.

  • PDF

Tomographic PIV measurement of internal complex flow of an evaporating droplet with non-uniformly receding contact lines

  • Kim, Hyoungsoo;Belmiloud, Naser;Mertens, Paul W.
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • We investigate an internal flow pattern of an evaporating droplet where the contact line non-uniformly recedes. By using tomographic Particle Image Velocimetry, we observe a three-dimensional azimuthal vortex pair that is maintained until the droplet is completely dried. The non-uniformly receding contact line motion breaks the flow symmetry. Finally, a simplified scaling model presents that the mechanical stress along the contact line is proportional to the vorticity magnitude, which is validated by the experimental results.

Fluid Flow in a Circular Cylinder Subject to Circulatory Oscillation-Theoretical Analysis (회전요동하는 원통내의 유동특성 - 이론적 해석)

  • Seo,Yong-Gwon;Kim, Hyeon-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3960-3969
    • /
    • 1996
  • A fluid flow inside a circular cylinder subject to horizontal and circular oscillation is analyzed theoretically. Under the assumption of small-amplitude oscillation, the governing equations take linear forms. The velocity field is obtained in terms of the first kind of Bessel function of order 1. It was found that a particle describes an orbit close to a circle in the central region and an arc near the side wall. We also obtained the Stokes' drift velocity induced by the traveling wave along the circumferential direction. The Eulerian streaming velocities at the edge of the bottom and side boundary layers were also obtained. It was shown that the vertical component of the steady streaming velocity on the side wall is almost proportional to the amplitude of the free surface motion.

Influence of Tip Mass on Stability of a Rotating Cantilever Pipe Conveying Fluid (유체유동 회전 외팔 파이프의 안정성에 미치는 끝단질량의 영향)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.976-982
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and tip mass. The equation of motion is derived by using the Lagrange's equation. The system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of a rotating angular velocity, mass ratio, the velocity of fluid flow and tip mass on the stability of a cantilever pipe by the numerical method are studied. The critical flow velocity for flutter is proportional to the angular velocity and tip mass of the cantilever pipe. Also, the critical flow velocity and stability maps of the pipe system are obtained by changing the mass ratios.

Effect of Operating Parameters on the Removal Performance of Copper Ion by Electrodialysis (전기투석을 이용한 구리이온의 제거 시 운전인자의 영향)

  • Jung, Hyo-Sang;Lee, Gangchoon
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • To evaluate the feasibility of electrodialysis for copper removal from industrial wastewater, the effect of operating parameters on the removal of copper was experimentally estimated. The limiting current density (LCD) linearly increased with the copper concentration and the flow rate. The time when the copper concentration of diluate reaches to 3 mg/L was linearly proportional to initial concentration of diluate, and the concentration of concentrate did not affect the removal rate. Increase in the flow rate gave a positive effect on the removal rate and became insignificant at flow rates greater than 2.4 L/min. The removal rate increased with the applied voltage. From the operation of the electrodialysis module used in this research, the flow rate of 2.4 L/min and the voltage corresponding to the 80~90% of LCD were found be the optimum operating condition for the copper removal from highly concentrated copper solutions.

A Method to Reduce Flow Depth of a Plate Heat Exchanger without a Loss of Heat Transfer Performance (판형 열교환기의 열전달성능 손실 없이 유동방향 길이를 축소하는 방법)

  • Song Gwi-Eun;Lee Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.129-136
    • /
    • 2006
  • Optimal design of an air-to-liquid finned plate heat exchanger is considered theoretically in this study. Based on existing correlations for the pressure loss and the heat transfer in channel flows, the optimal configuration of the plate heat exchanger including the optimal plate pitch and the optimal fin pitch is obtained to maximize the heat transfer within the limit of the pressure drop for a given flow depth of the plate heat exchanger. It is found that the optimal fin pitch is about one ninth of the optimal plate pitch. In the optimal configuration, the flow and thermal condition in the channels is just at the boundary between the laminar developing and laminar fully developed states. It is also found when reducing the flow depth of plate heat exchangers for compactness, the heat transfer performance can be maintained exactly the same if the geometric parameters such as the plate thickness, plate pitch, fin thickness, and fin pitch are reduced proportional to the square root of the flow depth as long as the flow keeps laminar within the heat exchangers.

Pressure control of hydraulic servo system using proportional control valve (비례전자밸브를 사용한 유압서보계의 압력제어)

  • Yang, Kyong-Uk;Oh, In-Ho;Lee, Ill-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1229-1240
    • /
    • 1997
  • The purpose of this study is to build up control scheme that promptly control pressure in a hydraulic cylinder having comparatively small control volume, using a PCV (proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is too large considering the small volume of the hydraulic cylinder and the time delay of response of the PCV is comparatively long. Considering the above-mentioned characteristics of the object pressure control system, in this study, control system is designed with two degree of freedom control scheme that is composed by adding a feed-forward control path to I-PDD$^{2}$ control system, and a reference model is used on the decision of control parameters. And through some experiments on the control system with FF-I-PDD$^{2}$ controller, the validity of this control method has been confirmed.