• 제목/요약/키워드: Proportional damping system

검색결과 93건 처리시간 0.031초

고유벡터의 변화량에 의한 비례감쇠구조물의 변경질량 및 그 위치 해석 (Analysis of mass and location of proportional damping system using the change of eigenvectors)

  • 이정윤
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.191-197
    • /
    • 2010
  • In spite of a large amount of previous research, detail study on modified mass in proportional damping system is not well understood. It is common to predict structural dynamic design parameters due to the change of mass, but to predict the amount of modified mass and the location where the mass is being modified are rarely found in previous literature. Such inverse problem required detail analytical study in order to understand structural modification in proportional damping system. This paper predicts the modified mass and the modified mass location in proportional damping system using sensitivity coefficients and iterative method. The sensitivity coefficients are obtained from the change of eigenvectors due to mass modification. This method is applied to a horizontal beam and three degree of freedoms system. To validate the predicted changing mass and its location, the obtained results are compared to the reanalysis result which shows good agreement.

비례점성.히스테리시스 감쇠계에 의한 철도차량의 실험모드해석 (Experimental Modal Analysis using Proportional Viscous.Hysteretic Damping System on the Rolling Stock)

  • 최문길;김창남;김의간
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.86-91
    • /
    • 1996
  • In this study, the modal analysis is adopted for the investigation of vibratory characteristics of a rolling stock. A governing equation for this system is deverived on a condition that the rolling stock is in proportional viscous damping and proportional hysteretic damping. By applying this method a computational modal analysis software is developed. The validity and reliability of this method is verified by comparing the results for the above case and with those of a system having proportional viscous damping and a system having general viscous damping. A system that has non-linearity, an error from the calculation may occur in the analysis. In this case, we applied the piecewise linear method to estimate the modal parameters.

  • PDF

동적 시스템의 감쇠행렬 추정 (Estimation of Damping Matrices for Dynamic Systems)

  • 이건명;김경주;주영호
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1021-1027
    • /
    • 2009
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping. In the second stage, a damping matrix is estimated with the mass and stiffness matrices fixed. Methods to estimate a damping matrix for this purpose are proposed in this paper. For a system with proportional damping, a damping matrix is estimated using the modal parameters extracted from the measured responses and the modal matrix calculated from the mass and stiffness matrices from the first stage. For a system with non-proportional damping, a damping matrix is estimated from the impedance matrix which is the inverse of the FRF matrix. Only one low or one column of the FRF matrix is measured, and the remaining FRFs are synthesized to obtain a full FRF matrix. This procedure to obtain a full FRF matrix saves time and effort to measure FRFs.

Effects of damping on the linear stability of a free-free beam subjected to follower and transversal forces

  • Kavianipour, O.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.709-724
    • /
    • 2009
  • In this paper a free-free uniform beam with damping effects subjected to follower and transversal forces at its end is considered as a model for a space structure. The effect of damping on the stability of the system is first investigated and the effects of the follower and transversal forces on the vibration of the beam are shown next. Proportional damping model is used in this work, hence, the effects of both internal (material) and external (viscous fluid) damping on the system are noted. In order to derive the frequency of the system, the Ritz method has been used. The mode shapes of the system must therefore be extracted. The Newmark method is utilized in the study of the system vibration. The results show that an increase in the follower and transversal forces leads to an increase of the vibrational motion of the beam which is not desirable.

설계파라미터 변경에 의한 비례 감쇠 구조물의 동특성 변화 해석 (Eigenderivative Analysis by Modification of Design Parameter in the Proportional Damping System)

  • 이정윤;이정우;이준호;오재응
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1648-1653
    • /
    • 2003
  • This paper predicts the modified proportional damping structural eigenvectors and eigenvalues due to the change in the mass and stiffness of a proportional damping structure by iterative calculation of the sensitivity coefficient using the original dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom lumped mass model by modifing the mass and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

  • PDF

설계파라미터 변경에 의한 비례 감쇠구조물의 동특성 변화 해석 (Eigenderivative Analysis by Modification of Design Parameter in the Proportional Damping System)

  • 이정우;오재응;이정윤
    • 한국소음진동공학회논문집
    • /
    • 제16권5호
    • /
    • pp.470-478
    • /
    • 2006
  • An efficient method for change of eigenvectors and eigenvalues due to the modifying proportional damping structure using sensitivity coefficients is presented. Sensitivity coefficients are determined by iteration with eigenvalue and eigenvectors before modification of system. The proposed method is applied to examples of 3 degrees of freedom system and plate by modifying mass and stiffness. The predicted change of eigenvectors and eigenvalues are in a good agreement with these from the structural re-analysis after modification of mass and stiffness.

변위비례식 마찰댐퍼 시스템의 임펄스 가진 응답해석 (Impulse Response Analysis of an Amplitude Proportional Friction Damper System)

  • 최명진;박동훈
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.377-384
    • /
    • 2004
  • An Amplitude Proportional Friction Damper (APFD), in which the friction force is proportional to the system displacement, has been introduced and mathematically modeled. To understand the damping characteristics of APFD, analytical solutions for the impulse response has been derivedand compared to the viscous damper. It is found that APFD system has very similar damping characteristics to viscous damper even though it is a friction damper. APFD may be used as a cost-effective substitution for the viscous damper and could also be used to improve the simple friction or Coulomb dampersince APFD works with no stick-slip and always returns to original position when external disturbance is disappeared.

차량 능동 현가 장치용 유압 액추에이터의 감쇠력 특성에 관한 연구 (A Study on the Characteristics of Damping Force in a Hydraulic Actuator for Vehicle Active Suspension System)

  • 윤영환;최명진
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.150-158
    • /
    • 2002
  • Through experimental works, the damping force vibration problem was investigated, which results from valve and surge pressure in the oil return line of the hydraulic circuit of an active suspension system in a passenger cu. Experiments were carried out under passive system, where an orifice valve was closed and non-active system, where an orifice valve was opened, using a pressure control valve controlled by solenoid. The effects of parameters of the valve overlap and accumulator on smoothing surge pressure was elucidated. It was proved that the apparent variation of damping force due to the overlap amount of pressure control valve is the most important factor to control the damping force variation. The procedure of the experimental works shows the development process of a proportional pressure control valve in the hydraulics system of an active suspension system of passenger car.

모형개선을 위한 감쇠행렬 추정법의 비교 (Comparison of Damping Matrix Estimation Methods for Model Updating)

  • 이건명;주영호;박문수
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.923-930
    • /
    • 2010
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping, and in the second stage, damping matrices are estimated with the mass and stiffness matrices fixed. Three methods to estimate damping matrices for this purpose are proposed in this paper. The methods include one for proportional damping systems and two for non-proportional damping systems. Method 1 utilizes orthogonality of normal modes and estimates damping matrices using the modal parameters extracted from the measured responses. Method 2 estimates damping matrices from impedance matrices which are the inverse of FRF matrices. Method 3 estimates damping using the equation which relates a damping matrix to the difference between the analytical and measured FRFs. The characteristics of the three methods are investigated by applying them to simulated discrete system data and experimental cantilever beam data.

Efficient Dynamic Response Analysis Using Substructuring Reduction Method for Discrete Linear System with Proportional and Nonproportional Damping

  • Choi, Dong-Soo;Cho, Maeng-Hyo;Kim, Hyun-Gi
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.85-99
    • /
    • 2008
  • The dynamic response analysis for large structures using finite element method requires a large amount of computational resources. This paper presents an efficient vibration analysis procedure by combining node-based substructuring reduction method with a response analysis scheme for structures with undamped, proportional or nonproportional damping. The iterative form of substructuring reduction scheme is derived to reduce the full eigenproblem and to calculate the dynamic responses. In calculating the time response, direct integration scheme is used because it can be applied directly to the reduced model. Especially for the non proportional damping matrix, the transformation matrices defined in the displacement space are used to reduce the system. The efficiency and the effectiveness of the present method are demonstrated through the numerical examples.