• Title/Summary/Keyword: Proportional Fairness

Search Result 76, Processing Time 0.026 seconds

Distributed Proportional Fair Scheduling for Wireless LANs (무선 LAN을 위한 분산화된 비례공정 스케줄링)

  • Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2262-2264
    • /
    • 2007
  • In this paper, we propose a distributed opportunistic scheduling scheme for wireless LAN network. Proportional fair scheduling is one of the opportunistic scheduling schemes and used for centralized networks, whereas we design distributed proportional fair scheduling (DPFS). In the proposed DPFS scheme, each receiver estimates channel condition and calculates independently its own priority with probabilistic manner, which can reduce excessive probing overhead required to gather the channel conditions of all receivers. We evaluate the proposed DPFS using extensive simulation and simulation results show that DPFS obtains up to 23% higher throughput than conventional scheduling schemes and has a flexibility to control the fairness and throughput by controlling the system parameter.

Efficient Packet Scheduling Algorithm using Virtual Start Time for High-Speed Packet Networks (고속 패킷망에서 효율적인 가상 시작 시간 기반 패킷 스케줄링 알고리즘)

  • Ko, Nam-Seok;Gwak, Dong-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3B
    • /
    • pp.171-182
    • /
    • 2003
  • In this paper, we propose an efficient and simple fair queueing algorithm, called Minimum Possible Virtual Start Time Fair Queueing (MPSFQ), which has O(1) complexity for the virtual time computation while it has good delay and fairness properties. The key idea of MPSFQ is that it has an easy system virtual time recalibration method while it follows a rate-proportional property. MPSFQ algorithm recalibrates system virtual time to the minimum possible virtual start time of all backlogged sessions. We will show our algorithm has good delay and fairness properties by analysis.

Multiuser Heterogeneous-SNR MIMO Systems

  • Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2607-2625
    • /
    • 2014
  • Previous studies on multiuser multiple-input multiple-output (MIMO) mostly assume a homogeneous signal-to-noise ratio (SNR), where each user has the same average SNR. However, real networks are more likely to feature heterogeneous SNRs (a random-valued average SNR). Motivated by this fact, we analyze a multiuser MIMO downlink with a zero-forcing (ZF) receiver in a heterogeneous SNR environment. A transmitter with Mantennas constructs M orthonormal beams and performs the SNR-based proportional fairness (S-PF) scheduling where data are transmitted to users each with the highest ratio of the SNR to the average SNR per beam. We develop a new analytical expression for the sum throughput of the multiuser MIMO system. Furthermore, simply modifying the expression provides the sum throughput for important special cases such as homogeneous SNR, max-rate scheduling, or high SNR. From the analysis, we obtain new insights (lemmas): i) S-PF scheduling maximizes the sum throughput in the homogeneous SNR and ii) under high SNR and a large number of users, S-PF scheduling yields the same multiuser diversity for both heterogeneous SNRs and homogeneous SNRs. Numerical simulation shows the interesting result that the sum throughput is not always proportional to M for a small number of users.

An Efficient Downlink Scheduling Scheme Using Prediction of Channel State in an OFDMA-TDD System (OFDMA-TDD 시스템에서 채널상태 예측을 이용한 효율적인 하향링크 스케줄링 기법)

  • Kim Se-Jin;Won Jeong-Jae;Lee Hyong-Woo;Cho Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.451-458
    • /
    • 2006
  • In this paper, we propose a novel scheduling algorithm for downlink transmission which utilizes scarce wireless resource efficiently in an Orthogonal Frequency Division Multiple Access/Time Division Duplex system. Scheduling schemes which exploit channel information between a Base Station and terminals have been proposed recently for improved performance. Time series analysis is used to estimate the channel state of mobile terminals. The predicted information is then used for prioritized scheduling of downlink transmissions for improved throughput, delay and jitter performance. Through simulation, we show that the total throughput and mean delay of the proposed scheduling algorithm are improved compared with those of the Proportional Fairness and Maximum Carrier to Interference Ratio schemes.

Packet Scheduling Algorithms for Throughput Fairness and Coverage Enhancement in TDD-OFDMA Downlink Network (TDD-OFDMA 하향 링크에서의 수율 공평성과 서비스 커버리지 보장을 위한 패킷 스케줄링 알고리즘 연구)

  • Ki, Young-Min;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.611-619
    • /
    • 2005
  • The present paper proposes two different packet scheduling algorithms in the IEEE 802.16e type TDD-OFDMA downlink, which are the weighted fair scheduling(WFS) and the throughput guarantee scheduling(TGS). The performance of proposed scheduling algorithms are compared to some of conventional schedulers such as round robin(RR), proportional fair(PF), fast fair throughput(FFTH), and fair throughput(FH) in terms of service coverage, effective throughput and fairness at 64 kbps and 128 kbps minimum user throughput requirements. For a relatively smaller throughput(64 kbps) requirement, the proposed algorithms provide higher improvement in the number of users per sector within 95$\%$ service coverage while satisfying the lxEV-DV fairness criterion. For a relatively larger throughput(128 kbps) requirement, the proposed algorithms provide higher coverage enhancement while maintaining the same effective aggregate throughput over PF scheduler.

Efficient Resource Allocation to Support QoS in a Fixed Relay Based Cellular System (고정 릴레이 기반 셀룰러 시스템에서 QoS를 보장하기 위한 효율적인 자원 할당)

  • Kim, Geun-Bae;Shin, Hee-Young;Park, Sang-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1128-1135
    • /
    • 2010
  • The relay based cellular system has been introduced to provide the service to satisfy the user requirement. The main reasons of using relay station are to expand a service coverage and to increase a system throughput with satisfying the service requirement level. This paper proposes a new resource allocation algorithm which supports the users' throughput fairness and service coverage in the Fixed Relay Based Cellular system with OFDMA. The performance of proposed algorithm is compared with the performances of proportional fairness(PF) algorithm. The simulation result shows that the proposed algorithm increases the number of active users in the service coverage while paying small amount of throughput loss.

A Study on Packet Scheduling for LTE Multimedia Data (LTE 멀티미디어 데이터를 위한 패킷 스케쥴링 알고리즘에 관한 연구)

  • Le, Thanh Tuan;Yoo, Dae-Seung;Kim, Hyung-Joo;Jin, Gwang-Ja;Jang, Byung-Tae;Ro, Soong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.613-619
    • /
    • 2012
  • The Long Term Evolution (LTE) system is already able to provide a background of variety services for mobile users with multimedia services such as audio, video, and data. In fact, the High Speed Packet Access plus (HSPA+) solution can greatly enhance bit rates on down-link. However, the supporting for multimedia applications with different QoS (Quality of Service) requirements is not devised yet. Hence, in this paper we propose an effective packet scheduling algorithm based on Proportional Fairness (PF) scheduling algorithms for the LTE. In this proposed packet scheduling scheme, we optimized instantaneous user data rates and the traffic class weight which prioritize user's packets. Finally, we evaluated and showed the performance of the proposed scheduling algorithm through simulations of multimedia traffics being transmitted to users over LTE links in a multi-cell environment.

Inter-Cell Cooperative Scheduling with Carrier Aggregation in LTE-Advanced System (LTE-Advanced 시스템의 반송파 집성(Carrier Aggregation)을 고려한 셀간 협력 스케쥴링 기법)

  • Yang, Chan S.;Cho, Kumin;Yu, Takki;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.151-161
    • /
    • 2014
  • 3GPP LTE-Advanced (Release 10) system specifies carrier aggregation (CA) to enable high data rate on using multiple frequency bands, including the variout CA-specific deployment scenarios. Considering one of those scenarios in which the different directional sector antenna is employed by each frequency band, we propose a per-carrier cell selection scheme that can improve the average throughput of the cell-edge users by allowing each user equipment (UE) to select the frequency band of the adjacent cell. Furthermore, a distributed algorithm for inter-cell copperative scheduling in this scheme is proposed to support proportional fairness among the cells. It has been shown that the proposed scheduling algorithm for the per-carrier cell selection scheme improves the cell-edge user throughput roughly by 50% over that of the conventional scheme.

Distributed Cognitive Radio MAC Protocol Considering User Fairness and Channel Quality (사용자의 공평성과 채널품질을 고려한 분산형 무선인지MAC 프로토콜)

  • Kwon, Young-Min;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • It is important that using of efficient radio resource because of deficiency spectrum problem, so that related to this problem many researches are have proceeded. To solve this problem, Cognitive Radio(CR) was suggested. The channels are allocated to the secondary users when the primary users don't use the channels, and unfairness of secondary users can be serious problem and channel quality of multichannel can be different due to the different traffic pattern of primary users. In this paper, we propose MAC prtocol both of the user's fairness and channel quality in CR networks. Simulation results show the comparison with CR MAC protocols.

An Adaptive Drop Marker for Edge Routers in DiffServ Networks

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.411-419
    • /
    • 2011
  • In this paper, we propose an Adaptive Regulating Drop (ARD) marker, as a novel dropping strategy at the ingressive edge router, to improve TCP fairness in assured services (ASs) without a decrease in the link utilization. To drop packets pertinently, the ARD marker adaptively changes a Temporary Permitted Rate (TPR) for aggregate TCP flows. The TPR is set larger than the current input IN packet rate of aggregate TCP flows while inversely proportional to the measured input OUT packet rate. To reduce the excessive use of greedy TCP flows by notifying droppings of their IN packets constantly to them without a decrease in the link utilization, the ARD marker performs random early fair remarking of their excessive IN packets to OUT packets at the aggregate flow level according to the TPR. In addition, an aggregate dropper is combined to drop some excessive IN packets fairly and constantly according to the TPR. Thus, the throughput of a TCP flow no more depends on only the sporadic and unfair OUT packet droppings at the RIO buffer in the core router. Then, the ARD marker regulates the packet transmission rate of each TCP flow to the contract rate by increasing TCP fairness, without a decrease in the link utilization.