• Title/Summary/Keyword: Property of deformation

Search Result 479, Processing Time 0.022 seconds

A study on the improvement of the adaptability of castoration (from forming of the wax patten to investing) (금속주조 수복물의 적합성 향상에 관한 연구 (Wax patten 형성에서 매몰까지))

  • Lee, Tea-Jung
    • Journal of Technologic Dentistry
    • /
    • v.10 no.1
    • /
    • pp.171-175
    • /
    • 1988
  • A good material selection and high dental techniques shall be required in all procedure from waxing up to investing of wax patten in order to get a cast restoration with good adaptability. Generally, wax and investing material should not have any deformation property but they art not so perfact in practice. Therefore, as the one of methods to produce more perfact, less deformation property and excellent product, it is necessary to eliminate the problems which can cause a deformation in each procedure.

  • PDF

Experimental study on deformation and strength property of compacted loess

  • Mei, Yuan;Hu, Chang-Ming;Yuan, Yi-Li;Wang, Xue-Yan;Zhao, Nan
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.161-175
    • /
    • 2016
  • A series of experimental studies are conducted on the deformation and shear strength property of compacted loess. The results reveal that the relationships of both the initial moisture content (w) and the initial degree of compaction (K) of compacted loess with cohesion (w) and the angle of internal friction (${\varphi}$) are linear. The relationship between the secant modulus ($E_{soi}$) and K is also linear. The relationship between $E_{soi}$ and w can be fitted well by a second-order polynomial. Further, when the influences of w and K are ignored, the relationship between the confined compression strain (${\varepsilon}$) and vertical pressure (p) can be expressed by a formula. A correction formula for the deformation of compacted loess caused by a change in w and K is derived on the basis of the study results.

Applications of Shear Wave Velocity in Geotechnical Engineering (지반공학 분야에서의 전단파속도의 활용)

  • Kim, Dong-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.7-23
    • /
    • 2007
  • The shear wave velocity is directly related to the deformation characteristic of soils which is an engineering property represented by the shear modulus. This feature presents an opportunity of advantageous utilization of the shear wave velocity for deformation analysis in geotechnical engineering applications, since the deformation modulus is determined on strong theoretical basis, whereas penetration resistances such as N by SPT or qc by CPT rely on empirical relations. Furthermore, it is an engineering property that can be evaluated by performing the same basic measurement in the laboratory and field, and various problems in geotechnical engineering can be dealt with economically and reliably when the field and laboratory methods are combined effectively. In this article, assessment of nonlinear deformation characteristic of soils based on synergic use of the field and laboratory test results is described, and representative case histories of geotechnical applications of the shear wave velocity are illustrated.

  • PDF

Material Property Estimation of Paper for Dynamic Behavior Simulation (동적 거동 시뮬레이션을 위한 종이의 물성치 추정)

  • Lee, Geun-Pyo;Choi, Jin-Hwan;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.103-111
    • /
    • 2008
  • This study proposes a technique to estimate the material property of a paper by using an experimental methods and commercial CAE software. Under gravitation, if one side of the paper is attached to the ground, the opposite side of paper is largely deformed, and vibrates freely. Since the paper has an orthotropic characteristic due to its treatment, the deformations in two orthogonal directions of the dry paper are different. An experimental method to measure the static deformation of the paper introduces this phenomenon. And dynamic behavior, frequency of free vibration is measured. And then. virtual prototypes that can represent the static and dynamic behavior are modeled by using the commercial CAE software $RecurDyn^{MT}$/MTT3D, which has been widely used by the printer makers. While comparing the deformation and frequency from the experiment and simulation, a design optimization technique in the commercial CAE software of R-INOPL, $RecurDyn^{TM}$/AutoDesign is used to estimate the material property such as Young's modulus, shear modulus and density of the paper.

A Study on the Expansive Deformation of Rifle Barrel and Gun Barrel (총열 및 포신의 팽창 변형에 관한 연구)

  • 김동욱;이재영;강영철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2000
  • In this paper, the possibility of plastic deformation of rifle and gun barrels is studied through the numerical methods. When a rifle or tank gun is fired, the expansive deformation of the barrel can occur by the explosive pressure and the thermal effect. Using the ABAQUS program, the stresses and displacements are computed for the elastic and elastic-plastic material property, and the possibility of plasticity deformation is investigated. In conclusion, rifle and tank gun barrel the plastic deformation occurred in some parts of the barrel

  • PDF

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

Sealing Performance Prediction of Thermoplastic Rubber Component using Non-linear Large Deformation F.E.M. (비선형 대변형 유한요소법을 이용한 열가소성 고무부품의 밀봉성능 예측)

  • Park, Sun;Lee, Shin-Young;Kang, Eun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.669-673
    • /
    • 2001
  • The objective of this paper is to predict and evaluate the sealing performance of the thermoplastic rubber component in the proto-design stage. The large strain and large deformation properties of rubber are modeled by strain energy function and the related material constants are calculated from the test data. The viscoelastic property of the rubber is also considered using the coefficients in a Prony series representation of a viscoelastic modulus ken the compression stress relaxation test. The results show that the current design of cap mount system has 2-different stiffness caused by the cap-mount contact and the viscoelastic property of rubber plays an important role in time dependent deformation.

  • PDF

A Safety about the Pipe Joint with Nonlinear Property (비선형 특성을 갖는 파이프 연결부에 대한 안전성)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.3-8
    • /
    • 2007
  • Nonlinear property and contact matter are analyzed about the pipe applied with internal pressure through this study. The weakest part and its safety can be examined. Maximum equivalent stress is shown at the contact surface between bolt and nut. The value of contact stress with the pressure of 12MPa is increased 1.4 times as large as that with no pressure. The maximum contact pressure is shown at the clamp corner of the external surface on pipe. The value of contact pressure with the pressure of 12MPa is increased 1.4 times as large as that with no pressure. The radial deformation with no pressure is also increased greatly at the middle part of internal surface on pipe. But this maximum deformation on pipe with the pressure of 12MPa is shown at the part far away the support of pipe. This value is increased 5.7 times as large as that value with no pressure. As contact status, the sticking occurs most at the external surface of pipe. It also tends to occur at the contact surface between bolt and nut. At the external surface of pipe, the sticking in case of the pressure of 12MPa occurs more than that in case of no pressure.

  • PDF

Dynamic response and waterproof property of tunnel segmental lining subjected to earthquake action

  • Yan, Qixiang;Bao, Rui;Chen, Hang;Li, Binjia;Chen, Wenyu;Dai, Yongwen;Zhou, Hongyuan
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.411-424
    • /
    • 2019
  • In this study, a numerical model of a shield tunnel with an assembled segmental lining was built. The seismic response of the segmental lining of the section of the shield tunnel in Line 1 of the Chengdu Metro is analyzed as it passes through the interface of sand-cobble and mudstone layers. To do so, the node-stress seismic-motion input method was used to input the seismic motion measured during the 2008 Wenchuan earthquake, and the joint openings and dislocations associated with the earthquake action were obtained. With reference to the Ethylene-Propylene-Diene Monomer (EPDM) sealing gaskets used in the shield tunnels in the Chengdu Metro, numerical simulation was applied to analyze the contact pressure along the seepage paths and the waterproof property under different joint openings and dislocations. A laboratory test on the elastic sealing gasket was also conducted to study its waterproof property. The test results accord well with the numerical results and the occurrence of water seepage in the section of the shield tunnel in Line 1 of the Chengdu Metro during the 2008 Wenchuan earthquake was verified. These research results demonstrate the deformation of segmental joint under earthquake, also demonstrate the relationship between segmental joint deformation and waterproof property.