• Title/Summary/Keyword: Propeller cavitation noise

Search Result 54, Processing Time 0.025 seconds

Vibration Mode Characteristics on a Propeller in very Large Vessel (대형선박의 추진기 진동 모우드 특성)

  • Kim J.H.;Cho D.S.;Han S.Y.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.97-106
    • /
    • 2005
  • According to the trends of construction of large size vessel with high power the natural frequencies of the bending modes of propeller blades have been lower than the past. Therefore, it is expected that the noise and vibration problems of the marine propeller are frequently occurred. As main issue of the propeller noise and vibration problem, the cavitation noise and singing noise due to the flow induced excitation of the bending modes of propeller blade in the high frequency range has been studied by the hydrodynamic researchers in the view point of the excitation force reduction. In this paper, the vibration mode characteristics of propeller with a large diameter in very large vessel are investigated by the vibration analysis of the finite element method using MSC/Nastran and the vibration measurement by the impact test on the propeller blade. According to the results, the natural frequencies of various blade bending modes in water entrained condition could be estimated from the natural frequencies taken by the measurement and free vibration analysis in the dry condition, and it could be estimated how the high frequency noise such as singing is generated from the blade bending modes.

  • PDF

Asymmetric Directionality of Broadband Ship Radiation Noise at Bow-Stern Aspect (광대역 선박방사소음의 선수-선미 비대칭 방향성)

  • Lee, Keunhwa;Kim, Minkyu;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.343-350
    • /
    • 2015
  • In this paper, we perform a study on the directionality of broadband ship radiation noise, mainly resulting from propeller cavitation. By examining a few foreign studies for ship radiation noise and domestic data measured in Korean waters, it is reconfirmed that the asymmetric directionality of the ship radiation noise at bow and stern aspect is observed commonly. In order to explore the reason of this asymmetric directionality, a numerical analysis, based on the acoustic boundary element method, is applied into the geometric form equal to the commercial ship used in the domestic experiment. The numerical result demonstrates that the diffraction of the propeller cavitation noise by ship is a primary cause of the bow-stern asymmetry in the directionality of ship radiation noise.

Measurement Uncertainty Analysis for Fluctuating Hull Pressure (선미변동압력 계측시험에서의 불확실성 해석)

  • G.I. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.46-60
    • /
    • 1993
  • Accurate measurements of fluctuating pressure in the cavitation tunnel are necessary to predict vibration and noise intensities in full scale ship. In this paper, the results of an experimental study on fluctuating pressure induced by a cavitating propeller are presented and discussed. Extensive measurements at several propeller revolutions are made using the flat plate to understand controversial problems of the effects of propeller revolution in the cavitation tunnel. The analysis of the uncertainties in experimental measurements and results is used to estimate the errors in uniform flow.

  • PDF

A Study on Autonomous Cavitation Image Recognition Using Deep Learning Technology (딥러닝 기술을 이용한 캐비테이션 자동인식에 대한 연구)

  • Ji, Bahan;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.105-111
    • /
    • 2021
  • The main source of underwater radiated noise of ships is cavitation generated by propeller blades. After the Cavitation Inception Speed (CIS), noise level at all frequencies increases severely. In determining the CIS, it is based on the results observed with the naked eye during the model test, however accuracy and consistency of CIS values are becoming practical issues. This study was carried out with the aim of developing a technology that can automatically recognize cavitation images using deep learning technique based on a Convolutional Neural Network (CNN). Model tests on a three-dimensional hydrofoil were conducted at a cavitation tunnel, and tip vortex cavitation was strictly observed using a high-speed camera to obtain analysis data. The results show that this technique can be used to quantitatively evaluate not only the CIS, but also the amount and rate of cavitation from recorded images.

The Flow Noise Characteristics on Hydrophone Installation Method in the Cavitation Tunnel (캐비테이션 터널에서의 수중청음기 설치 방법에 따른 유동소음 특성)

  • J.W. Ahn;Y.H. Park;K.S. Kim;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • As the existing noise measuring device was affected the flow-field and structural vibration directly, new experimental device was required. Two Hydrophone Boxes are designed and their performances are investigated. The noise level of the KRISO cavitation tunnel is compared with those of the other cavitation tunnels which have been designed for the noise study. The present experimental results show the possibility of the full-scale prediction for propeller cavitation noise and the improvement of the measurement performance at the range of low-frequency.

Comparative Study of Full-Scale Propeller Cavitation Test and LCT Model Test for MR Tanker (MR Tanker 실선 프로펠러 캐비테이션 시험 및 LCT 모형시험과 비교연구)

  • Ahn, Jong-Woo;Paik, Bu-Geun;Seol, Han-Shin;Park, Young-Ha;Kim, Gun-Do;Kim, Ki-Sup;Jung, Bo-Jun;Choi, Sung-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • In order to study correlation of the propeller cavitation performance between a full-scale ship and a model ship for the MR Tanker, the full-scale ship and the model tests were conducted. The full-scale ship test is composed of cavitation observation, pressure fluctuation and noise measurements, which are conducted using 2 observation windows and 8 pressure transducers installed inside the full-scale ship above the propeller. The model test in the Large Cavitation Tunnel(LCT) was conducted at the same conditions as that of the full-scale ship and its results are compared with those of the full-scale ship. Through the model-ship correlation analysis, it is considered that the experimental technique for the MR Tanker class ship was verified in LCT.

Performance optimization of marine propellers

  • Lee, Chang-Sup;Choi, Young-Dal;Ahn, Byoung-Kwon;Shin, Myoung-Sup;Jang, Hyun-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.211-216
    • /
    • 2010
  • Recently a Wide Chord Tip (WCT) propeller has been developed and applied to a commercial ship by STX Offshore & Shipbuilding. It is reported that the WCT propeller significantly reduces pressure fluctuations and also ship's noise and vibration. On the sea trial, vibration magnitude in the accommodations at NCR was measured at 0.9mm/sec which is only 10% of international allowable magnitude of vibration (9mm/sec). In this paper, a design method for increasing performance of the marine propellers including the WCT propeller is suggested. It is described to maximize the performance of the propeller by adjusting expanded areas of the propeller blade. Results show that efficiency can be increased up to over 2% through the suggested design method.

Material & Structural Characteristics of Composite Material Flexible Propeller (복합재료 유연 프로펠러의 재료 및 구조적 특성 연구)

  • Lee, Sang-Gab;Hwang, Jeong-Oh;Byun, Joon-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.203-217
    • /
    • 2009
  • The researches on the development of composite material propeller with outstanding damping effects have been actively attempted for the reduction of radiation noise of underwater vehicle propeller. Composite material suitable for the flexible propeller has the following advantages, such as high specific strength and specific stiffness, low thermal expansion coefficient, high resistance against environmental deterioration, low possibility of corrosion due to cavitation, nonoccurrence of rapid fracture due to fatigue, easy molding of complicated shape, easy repair maintenance and low production costs, etc. For the confirmation of optimal fiber array structures of composite material for the production of the flexible propeller blades, in this study, mechanical characteristics of its specimens according to materials were obtained and structural characteristics of propeller blade were also examined according to materials and stacking fiber arrays.

Numerical comparative investigation on blade tip vortex cavitation and cavitation noise of underwater propeller with compressible and incompressible flow solvers (압축성과 비압축성 유동해석에 따른 수중 추진기 날개 끝 와류공동과 공동소음에 대한 수치비교 연구)

  • Ha, Junbeom;Ku, Garam;Cho, Junghoon;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.261-269
    • /
    • 2021
  • Without any validation of the incompressible assumption, most of previous studies on cavitation flow and its noise have utilized numerical methods based on the incompressible Reynolds Average Navier-Stokes (RANS) equations because of advantage of its efficiency. In this study, to investigate the effects of the flow compressibility on the Tip Vortex Cavitation (TVC) flow and noise, both the incompressible and compressible simulations are performed to simulate the TVC flow, and the Ffowcs Williams and Hawkings (FW-H) integral equation is utilized to predict the TVC noise. The DARPA Suboff submarine body with an underwater propeller of a skew angle of 17 degree is targeted to account for the effects of upstream disturbance. The computation domain is set to be same as the test-section of the large cavitation tunnel in Korea Research Institute of Ships and Ocean Engineering to compare the prediction results with the measured ones. To predict the TVC accurately, the Delayed Detached Eddy Simulation (DDES) technique is used in combination with the adaptive grid techniques. The acoustic spectrum obtained using the compressible flow solver shows closer agreement with the measured one.