• 제목/요약/키워드: Propeller Wake

검색결과 165건 처리시간 0.025초

A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers

  • Wang, Lian-Zhou;Guo, Chun-Yu;Su, Yu-Min;Wu, Tie-Cheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.212-224
    • /
    • 2018
  • The characteristics of the relationship between the evolution of propeller trailing vortex wake and skew angle are numerically examined based on four different five-blade David Taylor Model Basin (DTMB) model propellers with different skew angles. Numerical simulations are based on Reynolds-averaged Naviere-Stokes (RANS) equations combined with SST $k-{\omega}$ turbulence model. Results show that the contraction of propeller trailing vortex wake can be restrained by increasing skew angle and loading conditions, and root vortices fade away when the propeller skew angle increases. With the increase of the propeller's skew angle, the deformation of the hub vortex and destabilization of the tip vortices are weakening gradually because the blade-to-blade interaction becomes weaker. The transition trailing vortex wake from stability to instability is restrained when the skew increases. Furthermore, analyses of tip vortice trajectories show that the increasing skew can reduce the difference in trailing vortex wake contraction under different loading conditions.

몰수분의 두꺼운 경계층 및 반류해석 (On the Thick Axisymmetric Boundary Layer and Wake Around the Body of Revolution)

  • 강신형;현범수;이영길
    • 한국기계연구소 소보
    • /
    • 통권9호
    • /
    • pp.141-151
    • /
    • 1982
  • An iterative procedure for the calculation of the thick axisymmetric boundary layer and wake near the stern of a body of revolution is presented. Procedure consists of the potential flow calculation by a method of the integral equation of first kind and the calculation of boundary layer and wake by a differential me¬thod of the boundary layer theory. Additionally, higher order terms are included in the conventional momentum equations and continuity equation for the consider¬ation of the characteristics of axisymmetric flow different from the one of two dimentional flow and the thick boundary layer. These solutions are matched at the edge of boundary layer and wake. The results obtained by the present me¬thod are compared with the experimental data and it is found that the nominal wake distribution at the propeller plane of a axisymmetric body is in good agree¬ment with the experiment.

  • PDF

PIV를 이용한 선박 프로펠러 후류의 속도장 계측 (PIV Velocity Field Measurements of Flow around a Ship with Rotating Propeller)

  • 이상준;백부근
    • 대한조선학회논문집
    • /
    • 제40권5호
    • /
    • pp.17-25
    • /
    • 2003
  • Velocity field behind a container ship model with a rotating propeller has been investigated using PIV (particle image velocimetry) system. Four hundred instantaneous velocity fields were measured at 4 different blade phases and ensemble-averaged to investigate the spatial evolution of vortical structure of near wake within one propeller diameter downstream. The phase-averaged mean velocity fields show the potential wake and the viscous wake formed due to the boundary layers developed on the blade surfaces. The interaction between bilge vortex developed along the hull surface and the tangential velocity component of incoming flow causes to have asymmetric flow structure in the transverse plane.

Computation of Turbulent Flows around Full-form Ships

  • Van Suak-Ho;Kim Hyoung-Tae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.118-125
    • /
    • 1995
  • This paper presents the result of a computational study on the wake characteristics of two tanker models. i.e HSVA and DYNE hull forms. The focus of the study is on the distributions of axial. radial and tangential velocities of the two hull forms in way of the propeller, especially over the propeller disk. The effect of bilge vortices on the velocity distribution is also concerned. For the computation of stern and wake flows of the two hull forms. the incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are numerically solved by the use of a second order finite difference method, which employs a four stage Runge-Kutta scheme with a residual averaging technique and the Baldwin-Lomax model. The calculated pressure distributions on the hull surface and the axial. radial and tangential velocity distributions over the propeller disk are presented for the two hull forms. Finally, the result of wake analysis for the computed wake distribution over the propeller disk is given in comparison with those for the experimental wake distribution for the both hull forms.

  • PDF

A Computational Study on Turbulent Flow Characteristics around Full-form Tankers

  • Van, Suak-Ho;Kim, Hyoung-Tae
    • Journal of Hydrospace Technology
    • /
    • 제2권2호
    • /
    • pp.1-13
    • /
    • 1996
  • This paper presents the result of a computational study on the wake characteristics of two tanker models, i.e. HSVA and Mystery hull forms. The focus of the study is on the distributions of axial, radial and tangential velocities of the two hull forms in way of the propeller, especially over the propeller disk. The effect of bilge vortices on the velocity distribution is also concerned. For the computation of stern and wake flows of the two hull farms, the incompressible Reynolds-Averaged Wavier-Stokes(RANS) equations are numerically solved by the second order finite difference method, which employs a four stage Runge-Kutta scheme with a residual averaging technique and the Baldwin-Lomax model. The calculated pressure distributions on the hull surface and the axial, radial and tangential velocity distributions over the propeller disk are presented for the two hull forms. Finally, the result of wake analysis for the computed wake distribution over the propeller disk is given in comparison with those for the experimental wake distribution fur the both hull forms.

  • PDF

선박(船舶)의 정수중(靜水中) 추진성능(推進性能) 해석(解析) 및 최적선형설계(最適船型設計)에의 응용(應用) (Development of a Method to Analyze Powering Performance of a Ship and its Application to Optimum Hull Form Design)

  • 양승일
    • 대한조선학회지
    • /
    • 제22권2호
    • /
    • pp.35-48
    • /
    • 1985
  • The present work develops a method of evaluating thrust deduction and wake for different loads of the propeller using the concerted application of the theoretical tools and experimental techniques. It also shows the applicability of the new method to the design of optimum hull form. Firstly, the problem of hull-propeller interaction was analyzed in terms of inviscid as well as viscous components of the thrust deduction and wake. The wavemaking resistance of a hull and propeller were mathematically represented by sources on the hull surface and sink on the propeller plane, respectively. The strength of sink was determined by utilizing the radial distributions of propeller load and nominal wake. The resistance increment due to a propeller and the axial perturbation flow induced by the hull in the propeller plane were calculated. Especially, the inviscid component of the thrust deduction was calculated by subtraction the wavemaking resistance of a bare hull, the wavemaking resistance of a free-running propeller and the augmentation of propeller resistance due to hull action from the wavemaking resistance of the hull with a propeller. The viscous components of the thrust deduction and wake were estimated as functions of propeller load which were established by the propeller load varying test after deduction the calculated inviscid components. Secondly, an analysis method of powering performance was developed based on the potential theory and the propeller load varying test. The hybrid method estimates the thrust deduction, wake and propeller open-water efficiency for different propeller load. This method can be utilized in the analysis of powering performance for the propeller load variation such as the added resistance due to hull surface roughness, the added resistance due to wind, etc. Finally, the hybrid method was applied to the optimum design of hull form. A series of afterbody shapes was obtained by systematically varying the waterplane and section shapes of a parent afterbody without changing the principal dimensions, block coefficient and prismatic coefficient. From the comparison of the predicted results such as wavemaking resistance, thrust deduction, wake and delivered power, an optimum hull form was obtained. The delivered power of the optimized hull form was reduced by 5.7% which was confirmed by model tests. Also the predicted delivered power by the hybrid method shows fairly good agreement with the test result. It is therefore considered that the new analysis method of powering performance can be utilized as a practical tool for the design of optimum hull form as for the analysis of powering performance for the propeller load variation in the preliminary design stage.

  • PDF

캐비테이션 터널에서 PIV를 이용한 프로펠러 후류 보오텍스 유동계측 및 거동해석 (PIV Aanalysis of Vortical Flow behind a Rotating Propeller in a Cavitation Tunnel)

  • 백부근;김진;박영하;김기섭;김경열
    • 대한조선학회논문집
    • /
    • 제42권6호
    • /
    • pp.619-630
    • /
    • 2005
  • A two-frame PIV (Particle Image Velocimetry) technique is used to investigate the wake characteristics behind a marine propeller with 4 blades at high Reynolds number. For each of 9 different blade phases from $ 0^{\circ} $ to $ 80^{\circ} $, one hundred and fifty instantaneous velocity fields are measured. They are ensemble averaged to study the spatial evolution of the propeller wake in the region ranging from the trailing edge to one propeller diameter (D) downstream location. The phase-averaged mean velocity shows that the trailing vorticity is related to radial velocity jump, and the viscous wake is affected by boundary layers developed on the blade surfaces and centrifugal force. Both Galilean decomposition method and vortex identification method using swirling strength calculation are very useful for the study of vortex behaviors En the propeller wake legion. The slipstream contraction occurs in the near-wake region up to about X/D : 0.53 downstream. Thereafter, unstable oscillation occurs because of the reduction of interaction between the tip vortex and the wake sheet behind the maximum contraction point.

프로펠러 후류 간섭 효과를 고려한 투척식 무인기 요잉모멘트 예측 (Prediction of Yawing Moment for a Hand-Launched UAV Considering Interference Effect of Propeller Wake)

  • 박지민;김동현;박형주
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.426-434
    • /
    • 2021
  • In this paper, three-dimensional unsteady computational fluid dynamic(CFD) analyses based on overset grid technique have been performed for a hand-launched unmanned aerial vehicle(UAV) considering the wake effect generated by a rotating propeller. In addition, the defection of rudder is considered in order to consider to predict the equilibrium condition of yawing moment during cruise flight conditions. It is importantly shown in this paper that the wake interference effect of the propeller is significant to accurately predict the yawing moment of the UAV and the yawing moment coefficient corresponding to a flight speed can be different because of its different amount of wake effect due to the different rotating speed of the propeller.

회전하는 선박 프로펠러 전방 유입류에 대한 PIV 속도장 해석 (PIV Velocity Field Analysis of Inflow ahead of a Rotating Marine Propeller)

  • 이상준;백부근
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.30-37
    • /
    • 2004
  • Flow characteristics of the inflow ahead of a rotating propeller attached to a container ship model were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases. The mean velocity fields show the acceleration of inflow due to the rotating propeller and the velocity deficit in the near-wake region. The axial velocity distribution of inflow in the upper plane of propeller is quite different from that in the lower plane due to the thick hull boundary layer. The propeller inflow also shows asymmetric axial velocity distribution in the port and starboard side. As the inflow moves toward the propeller, the effect of phase angle variation of propeller blade on the inflow becomes dominant. In the upper plane above the propeller axis the inflow has very low axial velocity and large turbulent kinetic energy, compared with the lower plane. The boundary layer developed along the bottom surface of stern hull forms a strong shear layer affecting vortex structure of the propeller near-wake.

위상평균 PTV 기법을 이용한 프로펠러 후류의 속도장 측정 (Velocity Field Measurements of Propeller Wake Using a Phase-averaged PTV Technique)

  • 백부근;이상준
    • 대한조선학회논문집
    • /
    • 제39권3호
    • /
    • pp.41-47
    • /
    • 2002
  • 선박용 프로펠러 후류의 유동 특성을 적응형 하이브리드 2-frame PTV(Particle Tracking Velocimetry)기법을 적용하여 실험적으로 해석하였다. 프로펠러 위상각에 대해 위상평균하여 하류로 나아감에 따른 후류 유동의 발달과정을 연구하였으며, 주 유동 방향으로 날개의 뒷날로부터 프로펠러 직경만큼의 거리까지를 측정하였다. 하나의 날개에 대해 4개의 다른 위상각 각각에서 얻은 위상평균 속도장 결과는 프로펠러 날개의 압력 차이로 인해 발생하는 주기적인 날개끝 보오텍스가 하류로 이동해 나감을 보여주고 있다. 또한, 프로펠러 날개 표면을 따라 발달하는 경계층에 기인한 점성 후류는 축방향 속도성분의 결손을 가진다. 프로펠러 날개 뒷날에서 발생하는 후연 보오텍스는 하류로 나아감에 따라 수축되며 점성 소산으로 인해 그 세기 및 크기는 점차 작아졌다.