Browse > Article
http://dx.doi.org/10.3744/SNAK.2005.42.6.619

PIV Aanalysis of Vortical Flow behind a Rotating Propeller in a Cavitation Tunnel  

Paik, Bu-Geun (Maritime & Ocean Engineering Research Institute, KORDI)
Kim, Jin (Maritime & Ocean Engineering Research Institute, KORDI)
Park, Young-Ha (Maritime & Ocean Engineering Research Institute, KORDI)
Kim, Ki-Sup (Maritime & Ocean Engineering Research Institute, KORDI)
Kim, Kyoung-Youl (Maritime & Ocean Engineering Research Institute, KORDI)
Publication Information
Journal of the Society of Naval Architects of Korea / v.42, no.6, 2005 , pp. 619-630 More about this Journal
Abstract
A two-frame PIV (Particle Image Velocimetry) technique is used to investigate the wake characteristics behind a marine propeller with 4 blades at high Reynolds number. For each of 9 different blade phases from $ 0^{\circ} $ to $ 80^{\circ} $, one hundred and fifty instantaneous velocity fields are measured. They are ensemble averaged to study the spatial evolution of the propeller wake in the region ranging from the trailing edge to one propeller diameter (D) downstream location. The phase-averaged mean velocity shows that the trailing vorticity is related to radial velocity jump, and the viscous wake is affected by boundary layers developed on the blade surfaces and centrifugal force. Both Galilean decomposition method and vortex identification method using swirling strength calculation are very useful for the study of vortex behaviors En the propeller wake legion. The slipstream contraction occurs in the near-wake region up to about X/D : 0.53 downstream. Thereafter, unstable oscillation occurs because of the reduction of interaction between the tip vortex and the wake sheet behind the maximum contraction point.
Keywords
Propeller wake; Tip vortex; Convection velocity; Swirling strength;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, S.J. and Paik, B.G., 2004, 'Stereoscopic PIV measurements of Flow around a Marine Propeller,' J. of Visualization, Vol. 7(1), pp. 25-32   DOI   ScienceOn
2 백부근, 이상준, 2002a, '위상평균 PTV 기법을 이용한 프로펠러 반류의 속도장 측정,' 대한조선학회 논문집, 제 39 권, 제 3 호, pp. 41-47
3 백부근, 이상준, 2002b, 'Stereoscopic PIV 기법을 이용한 프로펠러 반류의 3 차원 속도장 측정,' 제 2 회 한국유체공학학술대회 논문집, pp. 185-188
4 백부근, 이상준, 2003, 'PIV를 이용한 프로펠 후류의 속도장 계측,' 대한조선학회 논문집, 제 40권, 제 5호, pp. 17-25
5 백부근, 이정엽, 이상준, 2005a, '자유표면과 수심갚이가 회전하는 프로펠러 주위 유동에 미치는 영향에 대한 PIV 해석,' 대한조선학회 논문집 , 제 42권, 제 5호, pp. 427-434   DOI   ScienceOn
6 Chong, M.S., Perry, A.E. and Cantwell, B.J., 1990, 'A general classification of three-dimensional flow fields,' Physic of Fluids, A2, 765-777
7 Cotroni, A., Di, Felice F., Romano, G.P. and Elefante, M., 2000, 'Investigation of the Near Wake of a Propeller Using Particle Image Velocimetry,' Exp. in Fluids, Vol. 29, pp. S227-236   DOI   ScienceOn
8 Kline, S.J. and Robinson, S.K., 1989, 'Quasicoherent structures in the turbulent boundary layer. Part I: status report on a community-wide summary of the data.' In: Kline, S. J.: Afgan, N. H. (ed) Near Wall Turbulence. Proceedings of Zaric Memorial Conference, 200-217, New York: Hemisphere
9 Stella, A., Guj, G., Di, Felice F. and Elefante, M., 1998, 'Propeller Wake Evolution Analysis by LDV,' Proc. of the 22nd Symposium on Naval Hydrodynamics, pp.171-180
10 Zhou, J., Adrian, R. J. and Balachandar, S., 1996, 'Autogeneration of near-wall vortical structures in channel flow,' Physics of Fluids, 8, 288-290   DOI
11 Paik, B.G. Lee, C.M and Lee, S.J., 2005b, 'Comparative measurements on the flow structure of a marine propeller wake between an open free surface and closed surface flows,' J. of Marine Sci. & Tech., Vol. 10(3), pp. 123-130   DOI   ScienceOn