• Title/Summary/Keyword: Propellant

Search Result 1,205, Processing Time 0.02 seconds

A Study on Optimal Composition for Composite Solid Propellant under Multiple Criteria (다기준하(多基準下)의 혼성고체추진제 최적조성(混成固體推進劑 最適組成)에 관한 연구(硏究))

  • Jeong, Byeong-Hui;Kim, Gi-Bae
    • IE interfaces
    • /
    • v.1 no.1
    • /
    • pp.17-26
    • /
    • 1988
  • This paper describes a nonlinear goal programming approach to the optimal composition of composite solid propellant taking multiple characteristics into consideration synchronously. The nonlinear goal programming model with response functions, restrictions and the optimal value of each characteristic is developed using Scheffe's "Experiments with mixtures" and preference weighting system. Objective functions are described based on process, performance and assurance characteristics. The systematic approach to optimal composition in this study is proved efficient through a CTPB-AL-AP propellant which is one of composite solid propellant systems.

  • PDF

A Study on the Combustion Response Function of the Solid-Propellant (고체추진제의 연소응답함수에 대한 연구)

  • 윤재건
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.137-141
    • /
    • 1998
  • The combustion instability of a rocket motor can be predicted by the linear stability analysis. The most important input data in this analysis is the combustion response function of the solid propellant. In many cases, it is very difficult to measure the function. But, in that case, the combustion response function can be theoretically evaluated by properties of the propellant. In this study, the theoretical values were compared with measured values by T-burner. Data are relatively so well agreed that theoretical values are enough to be used in linear stability analysis of the rocket motor using a newly developed propellant.

  • PDF

Study on the Propellant Position for the Decrease of the Differential Pressure in the Interior Ballistics of a Gun Propulsion System (강내탄도 내 차압 감소를 위한 추진제 위치 연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.72-78
    • /
    • 2012
  • The position effect of the solid propellant in the combustion chamber on the decrease of the differential pressure has been investigated using the IBcode. Generally the metallic cartridge or CCC (combustible cartridge case) are used to load the propellant of the gun propulsion system. The position of the cartridge(propellant) is, therefore, a major factor for the interior ballistics in case the combustion chamber is larger than the cartridge. In this study, three different positions in the empty space of the chamber have been considered. As results, the case of the propellant located in the region near the base and breech has shown that the negative differential pressure and the difference between the breech pressure and the base pressure are much higher than those of the case of the propellant located in the center of the chamber. The case of the propellant in the center of the chamber is, therefore, more profitable to improve the performance of the interior ballistics.

Required Pressurant Mass for Cryogenic Propellant Tank with Pressurant Temperature Variation (가압가스 온도에 따른 극저온 추진제탱크 가압가스 요구량)

  • Kwon, Oh-Sung;Kim, Byung-Hun;Cho, In-Hyun;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1202-1208
    • /
    • 2010
  • The prediction of the required pressurant mass for maintaining the pressure of propellant tanks during propellant feeding is an important issue in designing pressurization system. The temperature of pressurant fed into propellant tank is the critical factor in the required pressurant mass and is one of the most crucial design parameters in the development of pressurization system including designing the weight of pressurant tanks and the size of heat exchanger. Hence a series of propellant drainage tests by pressurizing propellant stored in a cryogenic propellant tank have been performed with measuring the temperature distribution inside ullage and the required pressurant mass according to the temperature condition of pressurant. Results shows that the required pressurant mass decreases as the temperature of pressurant increases. However, the rate of the actual pressurant mass to the ideal required pressurant mass increases.

A Study on the Property of NEPE System Propellant with Respect to the Size of RDX (RDX 입도에 따른 NEPE계 추진제 특성 연구)

  • Jang, Myungwook;Kim, Taekyu;Han, Haeji;Yun, Jaeho;Son, Hyunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.40-45
    • /
    • 2018
  • The propellant tile and crack which account for the greatest proportion of solid rockets are profoundly affected by viscosity and mechanical properties of solid propellant. In this paper solid propellant with nitrate ester polyester(NEPE) system has been researched for the viscosity, mechanical properties and burning properties with size and mixing ratio of RDX. the viscosity of propellant was changed significantly depending on the size of RDX and mixing ratio, and mechanical properties of NEPE system propellant were also varied. Considering both lower viscosity and stable mechanical properties, the optimum size and mixing ratio of RDX can be identified as the main factors to the NEPE system propellant.

Review of Propellant Vibration and Control of Liquid Rocket Fuselage Feeding System (액체로켓 기체공급계의 추진제 진동특성 및 제어기술 동향)

  • Cho, Nam-Kyung;Kho, Hyun-Seok;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.89-94
    • /
    • 2010
  • Fuselage propellant feeding system should supply propellants to engine with required flow rate, temperature and pressure. Propellant vibration in engine and feeding line changes feeding characteristics, and frequently inhibits to satisfy the required feeding requirements. Sloshing and POGO vibration are known to be the major vibration phenomena. Concerning sloshing and POGO, vehicle control and structural dynamics aspects are extensively studied, whereas, its effect on propellant feeding performance is not clearly understood. This paper focuses on the deviation of required feeding performance due to propellant vibration. Overall characteristics of propellant vibration and its effect on propellant supply to engine are reviewed and control mechanism for suppressing vibration is introduced.

  • PDF

Flow Simulation of Simulant Gel Propellant with $Al_2O_3$ Nano Particles in A U-Type Duct (U-자형 덕트에서의 $Al_2O_3$ 나노 입자를 포함한 모사 Gel 추진제의 유동 특성 수치해석)

  • Oh, Jeong-Su;Park, Ji-Hoon;Jang, Seok-Pil;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.377-382
    • /
    • 2010
  • The Present study uses non-Newtonian simulant gel propellant mixed by Water, Carbopol 941, and NaOH solution in order to analyze the gel propellant flow behavior. Rheological data have been measured and obtained prior to the analysis of flow characteristics where water-gel propellant as well as water-gel propellant with $Al_2O_3$ nano particles are both used. The critical Dean number were examined by numerical simulation of gel propellant in the U-shape duct flow. It is found that though gel-nano propellants have higher apparent viscosity, the critical Dean number did not showed notable difference with respect to the water-gel propellant. It is believe that this is due to the fact that the power law index of both propellants have close value, as was demonstrated by Fellouah et al.[1]

  • PDF

TECHNICAL PAPERS : An Investigation on the Propellant Consumption Rate Gauged from the Low-Earth-Orbit Spacecraft (기술논문 : 저궤도 위성의 추진제 소모율 계측에 관한 고찰)

  • Kim,In-Tae;Heo,Hwan-Il;Kim,Jeong-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.113-119
    • /
    • 2003
  • During the mission operation time, it is very important to estimate the spacecraft propellant remaining as accurately as possible. This is because the quantity of propellant is related directly to how long the satellite can be operated ín orbit. There are two different methods for spacecraft propellant gauging; the PVT method and the book-keeping method. This paper describes the characteristics and applications of these methods using the flight operation data of KOMPSAT-1. Additionally, propellant consumption rates in delta-V maneuvering and each attitude control submode are analyzed according to spacecraft operation modes. The earth search submode shows the highest propellant consumption rate.

Study on the Propellant Position for the Decrease of the Differential Pressure of the Interior Ballistics (강내탄도 내 차압 감소를 위한 추진제 위치 연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.236-241
    • /
    • 2011
  • The position effect of the solid propellant in the combustion chamber on the decrease of the differential pressure has been investigated using the IBcode. Generally the metallic cartridge or CCC (combustible cartridge case) as the propellant for the cannon has been loaded. The position of the propellant(cartridge) is, therefore, a major factor for the interior ballistics in case the combustion chamber is larger than the cartridge. In this study, three cases of the existence of empty space in the chamber has been considered. As results, the case of the propellant located in the region near the base and breech has shown that the negative differential pressure and the difference between the breech pressure and the base pressure are much higher than those of the case of the propellant located in the center of the chamber. The case of the propellant in the center of the chamber is, therefore, more profitable to improve the performance of the interior ballistics.

  • PDF

A Study of Fuel-rich Solid Propellant Characteristic for Boron-bead Particle Size (금속연료인 과립화붕소의 입도에 따른 연료과농 고체 추진제 특성 연구)

  • Won, Jongung;Choi, Sunghan;Lee, Wonbok;Kim, Junhyung;Hwang, Gabsung;Park, Bocksun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.12-18
    • /
    • 2014
  • A study of gas generator Fuel-Rich propellant for air-breathing propulsion system was performed in this paper. General solid propellant comprises a mean of 60% or more oxidizing agents. but, to develop the fuel-rich solid propellant increased the content of the metal fuel and reduced the content of the oxidizing agents by approximately 30%. Very high amount of heat per volume of fuel into the metal having the Boron was used. Amorphous Boron Powder was applied to propellant as beads type and it allowed to design more amount of metal fuel in the fuel-rich propellant. And the Combustion characteristics and properties of fuel-rich solid propellant according to the Boron-bead sizes were confirmed.