• Title/Summary/Keyword: Propagation time

Search Result 2,219, Processing Time 0.03 seconds

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

ANALYSIS OF THE EFFECT OF UTI-UTC TO HIGH PRECISION ORBIT PROPAGATION

  • Shin, Dong-Seok;Kwak, Sung-Hee;Kim, Tag-Gon
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  • PDF

Analysis of Row and Column Lines in TFT-LCD panels with a Distributed Electrical Model

  • Park, Hyun-Woo;Kim, Soo-Hwan;Kim, Gyoung-Bum;Hwang, Sung-Woo;Kim, Su-Ki;McCartney, Richard I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.882-886
    • /
    • 2005
  • As the TFT-LCD panels become larger and provide higher resolution, the distributed capacitive and resistive lines induce the propagation delay, reduce the TFT-on time and deteriorate the pixel chargingratio. A number of the compensation methods, like the H-LDC (Horizontal Line Delay Compensation), have been proposed to compensate the propagation delay of the large and high resolution panels [1]. These methods, however, require the comparatively accurate gate propagation delay estimates at each column driver. In this paper, by observing the actual gate and data waveform from 15-inch XGA TFT-LCD panels, we could predict the propagation delay along the row and column line.

  • PDF

A Study on the Propagation Phenomenon of Neural Stimulated Potential using Distributed Electrical Circuit (뉴런의 분포정수 회로화에 의한 자극전위의 전도현상 연구)

  • Che, Gyu-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.256-263
    • /
    • 2011
  • The nerve impulse is induced by the stimulation of neuron or axon, and this stimulated voltage decays along the propagation distance and time if it is subtreshold potential. This behavior can be estimated using the electrical equivalent circuit because it is very similar to propagation phenomenon of electrical circuit to which Ohm's law is applied. Therefore, I calculated various biometric parameters of body, and then analyzed the propagation behavior of stimulated potential voltage using the distributed parameters of electrical circuit in this paper.

In-situ Crack Propagation Observation of a Particle Reinforced Polymer Composite Using the Double Cleavage Drilled Compression Specimens

  • Lee Yeon-Soo;Yoon Young-Ki;Jeong Bo-Young;Yoon Hi-Seak
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.310-318
    • /
    • 2006
  • In this study, we investigate the feasibility of in-situ crack propagation by using a double cleavage drilled compression (DCDC) specimen showing a slow crack velocity down to 0.03 mm/s under 0.01 mm/s of displacement control. Finite element analysis predicted that the DCDC specimens would show at least 4.3 fold delayed crack initiation time than conventional tensile fracture specimens under a constant loading speed. Using DCDC specimens, we were able to observe the in-situ crack propagation process in a particle reinforced transparent polymer composite. Our results confirmed that the DCDC specimen would be a good candidate for the in-situ observation of the behavior of particle reinforced composites with slow crack velocity, such as the self-healing process of micro-particle reinforced composites.

Investigation on propagation characteristics of AE signal with FEM (FEM을 이용한 음향신호의 전달특성에 관한 연구)

  • Seo, Pan-Seok;Koo, Kyung-Wan;Kim, Jong-Seok;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.274-277
    • /
    • 2001
  • This paper describes the simulation study. conducted on the propagation characteristics of AE signal. In the case of gas insulation, such as $SF_6$, the equipment is less affected by the environment condition than air insulation, because the component parts of equipment were placed in the enclosure, which is filled with compressed gas. But. when the breakdown in the electric insulation occurs. it takes much time and economical efforts to repair. Therefore it is very important to diagnose the equipment before the accident. And. in general. UHF and AE signal is the most common transducer to diagnose the state of the power equipment, so, in this investigation, we make a experimental apparatus with aluminum plate and transient analysis with ANSYS to observe the propagation characteristics of AE signal. Through the result of the analysis. we can make a further understanding on the propagation characteristics of AE signal, and get the fundamental skills for the GIS diagnosis.

  • PDF

A Study on the temperature Distributions at the Vicinity of a Very Fast Moving Heat Source (매우 빠르게 움직이는 열원 주위의 온도분포에 관한 연구)

  • Cho, Chang-Joo;Juhng, Woo-Nam;Lee , Yong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.162-169
    • /
    • 1999
  • Fourier heat conduction law becomes invalid for the situations involving extremely short time heating, very low temperatures and fast moving heat source(or crack), since the wave nature of heat propagation becomes dominant. For these conditions, the modified heat conduction equation with the finite propagation speed of heat in the medium could be applied to predict heat flux and temperature distributions. In this study, temperature distributions at the vicinity of a very fast moving heat source are investigated numerically. Thermal fields are characterized by thermal Mach numbers(M) defined as the ratio of moving heat source speed to heat propagation speed in the solid. In the transonic and supersonic ranges($M{\ge}1$), thermal shocks are shown, which separate the heat affected zone from the thermally undisturbed zone.

  • PDF

Crack Growth Analysis of Dissimilar Metal Weld using a Numerical Method (수치해석방법을 이용한 이종금속용접부에서의 균열성장해석)

  • Kim, Sang-Chul;Kim, Maan-Won
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.100-106
    • /
    • 2010
  • In this paper crack propagation analyses in the dissimilar metal weldment of a nozzle were performed using a finite element alternating method (FEAM). A two-dimensional axisymmetric finite element nozzle model was prepared and welding simulation including the thermal heat transfer analysis and the thermal stress analysis was performed. Initial cracks were inserted at weld and heat affected zone in the finite element model which has welding residual stress distribution obtained from the welding simulation. To calculate crack propagation trajectories of these cracks, a new fatigue crack evaluation module was developed in addition to the previous FEAM program. With the new FEAM fatigue crack evaluation module, crack propagation trajectory and crack growth time were calculated automatically and effectively.

Modified discontinuous deformation analysis for rock failure: Crack propagation

  • Chen, Yunjuan;Zhang, Xin;Zhu, Weishen;Wang, Wen
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.325-336
    • /
    • 2018
  • Deformation of rock masses is not only related to rock itself, but also related to discontinuities, the latter maybe greater. Study on crack propagation at discontinuities is important to reveal the damage law of rock masses. DDARF is a discontinuous deformation analysis method for rock failure and some modified algorithms are proposed in this study. Firstly, coupled modeling methods of AutoCAD-DDARF and ANSYS-DDARF are introduced, which could improve the modeling efficiency of DDARF compared to its original program. Secondly, a convergence criterion for automatically judging the computation equilibrium is established, it could overcome subjective drawbacks of ending one calculation by time steps. Lastly but not the least, relationship between the super relaxation factor and the calculation convergence is analyzed, and reasonable value range of the super relaxation factor is obtained. Based on these above modified programs, influences on crack propagation of joint angle, joint parameters and geo-stresses' side pressure are studied.

Wave propagation of a functionally graded beam in thermal environments

  • Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1421-1447
    • /
    • 2015
  • In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.