• Title/Summary/Keyword: Propagation methods

Search Result 914, Processing Time 0.024 seconds

Improved Power Estimation Methodology Based on Signal Transition Density Propagation Behavior (신호 전이 밀도 전파 동작에 기초한 향상된 전력 평가 방법의 연구)

  • Kim, Dong-Ho;Woo, Jong-Jung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2520-2527
    • /
    • 2000
  • An improved transition density propagation method for power estimation is proposed. The power estimation for the zero delay model is a proper criteria for the.lower boutldlIry for power consumption. A transition propagation method, including the zero delay model as a lower boundary for power stimation was studied. However, there were some redundancy factors in the process of transition density propagation. Hence this paper will explore the transition density propagation behavior to eliminate the redundancy factors and present theirriprQved estimation methodology for the signal transition density. The experiments show that the proposed method has comparably better estimation accuracy than the conventional methods.

  • PDF

Advances in Damage Visualization Algorithm of Ultrasonic Propagation Imaging System

  • Lee, Jung-Ryul;Sunuwar, Nitam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.232-240
    • /
    • 2013
  • This paper presents recent advances in damage visualization algorithms of laser generated ultrasonic propagation imaging(UPI) system. An effective damage evaluation method is required to extract correct information from raw data to properly characterize anomalies present in structure. A temporal-reference free imaging system provides easy and rapid defect inspection capability with less computational complexity. In this paper a number of methods such as ultrasonic wave propagation imaging(UWPI), anomalous wave propagation imaging(AWPI), ultrasonic spectral imaging(USI), wavelet ultrasonic propagation imaging(WUPI), variable time window amplitude mapping(VTWAM), time point adjustment(TPA), time of flight and amplitude mapping(ToF&Amp) and ultrasonic wavenumber imaging(UWI) are discussed with instances of successful implementation on various structures.

Ground Vibration Analysis Methods for Train Transit on Bridges (교량구간에서의 열차하중에 의한 지반진동 해석법)

  • 윤정방;이종재;김두기;심종민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.357-364
    • /
    • 1998
  • In this paper, ground vibration analysis methods for train transit on bridges are studied. Train loads acting on the piers are evaluated considering the interactions between the trains and the bridge. The 2D in-plane wave propagation method and the axisymmetric wave propagation method are used in the ground vibration analysis, and then the results of the ground vibration are compared. A modified axisymmetric method is presented, which can consider the effect of the train loadings on a series of piers as the train moves.

  • PDF

Localization of Rotating Sound Sources Using Beamforming Method (빔형성방법을 이용한 회전하는 음원의 위치 판별에 관한 연구)

  • Lee Jaehyung;Hong Suk-Ho;Choi Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1338-1346
    • /
    • 2004
  • The positions of rotating sound sources have been localized by experiments with the Doppler effects removed. In order to de-Dopplerize the sound signals emitted from moving sources, two kinds of signal reconstruction methods were applied. One is the forward propagation method and the other is the backward propagation method. Forward propagation method analyze the source emission time based on the instantaneous distance between sensors and the assumed source position, then the signals are reconstructed with respect to the emission time. On the other hand, the backward method uses time delay to do-Dopplerize the acquired data for the received time of reference. In both techniques. the reconstructed signal data were processed using beamforming algorithm to produce power distributions at the frequencies of interest. Experiments have been carried out for varying frequencies, rotating speeds and the object distances. It is shown that the forward propagation method gives better performance in locating source position than the backward propagation method.

Effects Analysis of Partial Discharge Signal Propagation Characteristics in Underground Transmission Cables Using EMTP (EMTP를 이용한 지중송전케이블의 부분방전 신호 전파특성 분석)

  • Jung, Chae-Kyun;Jang, Tai-In
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.629-635
    • /
    • 2014
  • This paper describes propagation characteristics obtained by considering semiconducting screen and cross-bonding in underground transmission cables. The semiconducting screen of power cable has effect on propagation characteristics including attenuation, velocity and surge impedance. However, it is very difficult to apply the semiconduction screen for EMTP model because of the number of conductors limitation. Therefore, CIGRE WG 21-05 proposed advanced insulation structure and analysis technique of simplified approach including inner and outer semiconducting screen. In this paper, the various propagation characteristics analyse using this structure and technique for 154kV XLPE $2000mm^2$ cable. The frequency independent model of EMTP CABLE PARAMETER is used for just pattern analysis of propagation characteristics. For exact data analysis, the frequency dependent model of J-marti is used for EMTP modeling. From these result, various propagation characteristics of 154kV XLPE $2000mm^2$ cable according to semi conducting screen consideration, frequency range, cable length and pulse width are analysed. In addition, in this paper, the effects of cross-bonding are also variously discussed according to cross-bonding methods, direct connection and impedance of lead cable.

The continuous-discontinuous Galerkin method applied to crack propagation

  • Forti, Tiago L.D.;Forti, Nadia C.S.;Santos, Fabio L.G.;Carnio, Marco A.
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • The discontinuous Galerkin method (DGM) has become widely used as it possesses several qualities, such as a natural ability to dealing with discontinuities. DGM has its major success related to fluid mechanics. Its major importance is the ability to deal with discontinuities and still provide high order of approximation. That is an important advantage when simulating cracking propagation. No remeshing is necessary during the propagation, since the crack path follows the interface of elements. However, DGM comes with the drawback of an increased number of degrees of freedom when compared to the classical continuous finite element method. Thus, it seems a natural approach to combine them in the same simulation obtaining the advantages of both methods. This paper proposes the application of the combined continuous-discontinuous Galerkin method (CDGM) to crack propagation. An important engineering problem is the simulation of crack propagation in concrete structures. The problem is characterized by discontinuities that evolve throughout the domain. Crack propagation is simulated using CDGM. Discontinuous elements are placed in regions with discontinuities and continuous elements elsewhere. The cohesive zone model describes the fracture process zone where softening effects are expressed by cohesive zones in the interface of elements. Two numerical examples demonstrate the capacities of CDGM. In the first example, a plain concrete beam is submitted to a three-point bending test. Numerical results are compared to experimental data from the literature. The second example deals with a full-scale ground slab, comparing the CDGM results to numerical and experimental data from the literature.

Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis - recent advances

  • Schueller, G.I.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.1-20
    • /
    • 2009
  • The present contribution addresses uncertainty quantification and uncertainty propagation in structural mechanics using stochastic analysis. Presently available procedures to describe uncertainties in load and resistance within a suitable mathematical framework are shortly addressed. Monte Carlo methods are proposed for studying the variability in the structural properties and for their propagation to the response. The general applicability and versatility of Monte Carlo Simulation is demonstrated in the context with computational models that have been developed for deterministic structural analysis. After discussing Direct Monte Carlo Simulation for the assessment of the response variability, some recently developed advanced Monte Carlo methods applied for reliability assessment are described, such as Importance Sampling for linear uncertain structures subjected to Gaussian loading, Line Sampling in linear dynamics and Subset simulation. The numerical example demonstrates the applicability of Line Sampling to general linear uncertain FE systems under Gaussian distributed excitation.

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

Wave Propagation Models Due to Topographic Change: Scatterer Method and Transfer Matrix Method (지형변화에 의한 파랑전파모형: 산란체법과 변환행렬법)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.163-170
    • /
    • 2010
  • Both scatterer method and transfer matrix method are compared to analyze their characteristics, which are wave propagation models due to topographic change based on plane wave approximation. Results from the scatterer method are closer to the results obtained by the more accurate existing models and it is appraised that the scatterer method gives the clearer explanation about physical process involved in the wave transformation. Since both methods have analytical solutions, in the computational point of view they are very fast and easy to be implemented. Both methods give a good prediction for wave scattering by relatively simple bedform.

Structural damage detection through longitudinal wave propagation using spectral finite element method

  • Kumar, K. Varun;Saravanan, T. Jothi;Sreekala, R.;Gopalakrishnan, N.;Mini, K.M.
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.161-183
    • /
    • 2017
  • This paper investigates the damage identification of the concrete pile element through axial wave propagation technique using computational and experimental studies. Now-a-days, concrete pile foundations are often common in all engineering structures and their safety is significant for preventing the failure. Damage detection and estimation in a sub-structure is challenging as the visual picture of the sub-structure and its condition is not well known and the state of the structure or foundation can be inferred only through its static and dynamic response. The concept of wave propagation involves dynamic impedance and whenever a wave encounters a changing impedance (due to loss of stiffness), a reflecting wave is generated with the total strain energy forked as reflected as well as refracted portions. Among many frequency domain methods, the Spectral Finite Element method (SFEM) has been found suitable for analysis of wave propagation in real engineering structures as the formulation is based on dynamic equilibrium under harmonic steady state excitation. The feasibility of the axial wave propagation technique is studied through numerical simulations using Elementary rod theory and higher order Love rod theory under SFEM and ABAQUS dynamic explicit analysis with experimental validation exercise. Towards simulating the damage scenario in a pile element, dis-continuity (impedance mismatch) is induced by varying its cross-sectional area along its length. Both experimental and computational investigations are performed under pulse-echo and pitch-catch configuration methods. Analytical and experimental results are in good agreement.