• Title/Summary/Keyword: Propagation methods

Search Result 914, Processing Time 0.026 seconds

Analysis of Harmonic Currents Propagation on the Self-Excited Induction Generator with Nonlinear Loads

  • Nazir, Refdinal
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1935-1943
    • /
    • 2014
  • In recent years, the induction machines are increasingly being used as self-excited induction generators (SEIG). This generator is especially widely employed for small-scale power plants driven by renewable energy sources. The application of power electronic components in the induction generator control (IGC) and the loading of SEIG using nonlinear loads will generate harmonic currents. This paper analyzes the propogation of harmonic currents on the SEIG with nonlinear loads. Transfer function method in the frequency domain is used to calculate the gain and phase angle of each harmonic current component which are generated by a nonlinear loads. Through the superposition approach, this method has also been used to analyze the propagation of harmonic currents from nonlinear load to the stator windings. The simulation for the propagation of harmonic currents for a 4 pole, 1.5 kW, 50Hz, 3.5A, Y-connected, rotor-cage SEIG with energy-saving lamps, have provided results almost the same with the experiment. It can prove that the validity of the proposed models and methods. The study results showed that the propagation of harmonic currents on the stator windings rejects high order harmonics and attenuates low order harmonics, consequently THDI diminish significantly on the stator windings.

A Study on the Native Environment and Cutting Propagation for the Black-berry Magnolia Vine [Schisandra repanda (Siebold & Zucc.) Radlk] in Halla Mountain (한라산 흑오미자의 자생환경 및 삽목증식 연구)

  • Boo, Jae Yoon;Kim, Ju Sung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.5
    • /
    • pp.354-359
    • /
    • 2020
  • Background: The recent, decline in Black-berry Magnolia Vine (Schisandra repanda; BMV) native to Jeju Island, Korea, has raised concerns about the causes of this decline. We investigated the native environment of S. repanda and evaluated its propagation through cuttings to provide preliminary data for its restoration in Jeju Island. Methods and Results: The native environment of the BMV in the Hallasan National Park was surveyed and the climatic variables (temperature and humidity) were analyzed. The effects of the sex of the donor plant (male/female) type of cutting (softwood/hardwood), and treatment with a plant growth regulator (indole-3-butylic acid/rootone) on the rooting of BMV were investigated. Additinallly, the rooting rate, root count, and root length, as well as temperature and humidity were measured in the vinyl moist chambers. BMV was observed in 63 plants distributed from 567 m to 1,364 m above sea level of the Hallasan National Park. In the cutting experiment, the rooting rate was 71.9%, and it was higer in female plants (75.0%) than in male plants (68.8%). Conclusions: The mass propagation of BMV through cuttings valuable for its restoration as without such safeguard measures, the population could face extinction within a few decades.

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.

Evaluation for Applications of the Levenberg-Marquardt Algorithm in Geotechnical Engineering (Levenberg-Marquardt 알고리즘의 지반공학 적용성 평가)

  • Kim, Youngsu;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.49-57
    • /
    • 2009
  • In this study, one of the complicated geotechnical problem, compression index was predicted by a artificial neural network method of Levenberg-Marquardt (LM) algorithm. Predicted values were compared and evaluated by the results of the Back Propagation (BP) method, which is used extensively in geotechnical engineering. Also two different results were compared with experimental values estimated by verified experimental methods in order to evaluate the accuracy of each method. The results from experimental method generally showed higher error than the results of both artificial neural network method. The predicted compression index by LM algorithm showed better comprehensive results than BP algorithm in terms of convergence, but accuracy was similar each other.

  • PDF

Experimental Study on Fatigue Crack Initiation and Propagation due to Fretting Damage in Press-fitted Shaft (압입축에 발생하는 프레팅 피로균열 발생 및 진전 특성 실험)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.701-709
    • /
    • 2007
  • To clarify the characteristics of surface damage due to fretting in press-fitted shaft, experimental methods were applied to small scale specimen with different bending load condition. Fatigue tests and interrupted fatigue tests of press-fitted specimen were carried out by rotate bending fatigue test. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that small fatigue cracks are nucleated early in life regardless of bending stress, and thus the most portion of fatigue life on press fits can be considered to be crack propagation process. Most of surface cracks are initiated near the contact edge, and multiple cracks are nucleated and interconnected. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. It is thus suggested that the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in press fits.

Simplified Estimation Method for Collective Uncertainty-Propagations of Hysteretic Energy Dissipating Device's Properties

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1508-1524
    • /
    • 2018
  • Hysteretic energy dissipating devices (HEDDs) have been increasingly applied to building construction to improve the seismic performance. The seismic responses of such damped structures are significantly affected by HEDD's structural properties. An accurate investigation on the propagation of HEDD's structural properties is required for reasonable evaluation of the seismic performance of a structure. This study aims to develop simplified methods that can estimate the collective uncertainty-propagation to the seismic response of damped structures employing HEDDs. To achieve this, three- and six-story steel moment-resisting frames were selected and the propagations of the individual HEDD's property-uncertainties were evaluated when they are subjected to various levels of seismic demand. Based on the result of individual uncertainty-propagations, a simplified method is proposed to evaluate the variation of seismic response collectively propagated by HEDD's property-uncertainties and is verified by comparing with the exact collective uncertainty-propagation calculated using the Monte Carlo simulation method. The proposed method, called as a modified SRSS method in this study, is established from a conventional square root of the sum of the squares (SRSS) method with the relative contributions of the individual HEDD's property-uncertainty propagations. This study shows that the modified SRSS method provides a better estimation than the conventional SRSS method and can significantly reduce computational time with reasonable accuracy compared with the Monte Carlo simulation method.

Dynamic Network Loading Method and Its Application (동적 네트워크 로딩 방법 및 적용에 관한 연구)

  • 한상진
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.101-110
    • /
    • 2002
  • This study first explains general features of traffic assignment models and network loading methods, and investigates the relationship between them. Then it introduces a dynamic network loading method, which accounts far time variable additionally. First of all, this study suggests that it is important to consider some requirements for the dynamic network loading, such as causality, FIFO(First-In-First-Out) discipline, the flow propagation, and the flow conservation. The details of dynamic network loafing methods are explained in the form of algorithm, and numerical examples are shown in the test network by adopting deterministic queuing model for a link Performance function.

Back-propagation Algorithm with a zero compensated Sigmoid-prime function (영점 보상 Sigmoid-prime 함수에 의한 역전파 알고리즘)

  • 이왕국;김정엽;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.115-122
    • /
    • 1994
  • The problems in back-propagation(BP) generally are learning speed and misclassification due to lacal minimum. In this paper, to solve these problems, the classical modified methods of BP are reviewed and an extension of the BP to compensate the sigmoide-prime function around the extremity where the actual output of a unit is close to zero or one is proposed. The proposed method is not onlu faster than the conventional methods in learning speed but has an advantage of setting variables easily because it shows good classification results over the vast and uncharted space about the variations of learning rate, etc.. And it is simple for hardware implementation.

  • PDF

Efficient Image Chaotic Encryption Algorithm with No Propagation Error

  • Awad, Abir;Awad, Dounia
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.774-783
    • /
    • 2010
  • Many chaos-based encryption methods have been presented and discussed in the last two decades, but very few of them are suitable to secure transmission on noisy channels or respect the standard of the National Institute of Standards and Technology (NIST). This paper tackles the problem and presents a novel chaos-based cryptosystem for secure transmitted images. The proposed cryptosystem overcomes the drawbacks of existing chaotic algorithms such as the Socek, Xiang, Yang, and Wong methods. It takes advantage of the increasingly complex behavior of perturbed chaotic signals. The perturbing orbit technique improves the dynamic statistical properties of generated chaotic sequences, permits the proposed algorithm reaching higher performance, and avoids the problem of error propagation. Finally, many standard tools, such as NIST tests, are used to quantify the security level of the proposed cryptosystem, and experimental results prove that the suggested cryptosystem has a high security level, lower correlation coefficients, and improved entropy.

LIGHT-CONE EFFECT OF RADIATION FIELDS IN COSMOLOGICAL RADIATIVE TRANSFER SIMULATIONS

  • Ahn, Kyungjin
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.67-73
    • /
    • 2015
  • We present a novel method to implement time-delayed propagation of radiation fields in cosmological radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative transfer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.