• Title/Summary/Keyword: Propagation Life

Search Result 549, Processing Time 0.023 seconds

Life Prediction by Retardation Behavior of Fatigue Crack and its Nondestructive Evaluation (피로균열의 지연거동에 따른 수명예측 및 비파괴평가)

  • Nam, Ki-Woo;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.36-48
    • /
    • 1999
  • Fatigue life and crack retardation behavior after penetration were experimentally examined using surface pre-cracked specimens of aluminium alloy 5083. The Wheeler model retardation parameter was used successfully to predict crack growth behavior after penetration. By using a crack propagation rule, the change in crack shape after penetration can be evaluated quantitatively. Advanced, waveform-based acoustic emission (AE) techniques have been successfully used to evaluate signal characteristics obtained form fatigue crack propagation and penetratin behavior in 6061 aluminum plate with surface crack under fatigue stress. Surface defects in the structural members are apt to be origins of fatigue crack growth, which may cause serious failure of the whole structure. The nondestructive analysis on the crack growth and penetration from these defects may, therefore, be one of the most important subjects on the reliability of the leak before break (LBB) design. The goal of the present study is to determine if different sources of the AE could be identified by characteristics of the waveforms produced from the crack growth and penetration. AE signals detected in four stages were found to have different signal per stage. With analysis of waveform and power spectrum in 6061 aluminum alloys with a surface crack, it is found to be capabilities on real-time monitoring for the crack propagation and penetration behavior of various damages and defects in structural members.

  • PDF

Behavioral Characteristics of Fatigue Cracks in Small Hole Defects Located on Opposite Sides of the Shaft Cross Section

  • Sam-Hong;Il-Hyuk;Jeong-Moo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.36-42
    • /
    • 2004
  • The shaft with the circular cross section has symmetric structural combination parts to keep the rotating balance. Hence the crack usually initiates from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using a rotary bending tester and the specimen with symmetric defects in circular cross section. The characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section were examined. We also observed the internal crack using the oxidation coloring method and investigated the fatigue behavior using the relationship between the surface crack and the internal crack. As a result, the fatigue life of symmetric cracks was reduced by 35% compared to that of a single crack. We examined the characteristics of fatigue behavior of elements with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range that were obtained from an approximation method.

Effects of Failure Mode II on Crack Initiation and Crack propagation Steps Using Multilevel Fatigue Loading Test (다단계 피로하중 실험을 통한 균열 발생 및 전파단계에서 파괴모드 II 영향 분석)

  • Hong, Seok Pyo;Park, Sae Min;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.853-860
    • /
    • 2017
  • To evaluate the effects of mode II on the crack initiation and propagation stages, the effects in the fatigue threshold region under a mixed-mode I+II loading state was experimentally investigated. In the case of mixed-mode I + II, during the crack initiation stage, as the loading application angle (${\theta}$) increased, cracks occurred in the lower load owing to the effects of mode II, while the crack propagation rate decreased. The effects of mode II were experimentally investigated in the crack propagation stage by means of multilevel loading direction variation. Following mixed-mode I+II ($0^{\circ}{\rightarrow}{\theta}{\rightarrow}60^{\circ}$), as the load application angle increased, the fatigue crack propagation rate decreased, as did the fatigue crack propagation rate, which occurred later. Following mixed-mode I + II in case of(${\theta}{\geq}75^{\circ}$), the fatigue crack propagation rate was found to increase, while the fatigue life decreased.

Variation of fatigue crack propagation behavior based on the shape of the interaction between two cracks (두 크랙의 간섭형태에 따른 피로크랙전파거동의 변화)

  • Song, Sam-Hong;Choe, Byeong-Ho;Bae, Jun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1097-1105
    • /
    • 1997
  • Because of the existence of stress interaction field made by other defects and propagating cracks, the structure may be weakened. Therefore in this study, the crack behavior in the interaction field made by two different cracks is studied experimentally. In the experiment, vertical distance between two cracks and applied stress are varied to make different stress interacted field. In addition, the effect of plastic zone is used to examine crack propagation path and rate. Three types of crack propagation in the interacted field were found, and crack propagating path and rate of two cracks were significantly changed according to different applied stress as each crack propagates. And the results are attributed to the effect of the size and shape of the plastic zone.

Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 2: Fatigue Crack Propagation Behavior (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제2보: 피로균열진전 거동)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Seo, Hyun-Soo;Nam, Ki-Woo;Lee, Kun-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.79-84
    • /
    • 2009
  • Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. Therefore, the fracture mechanics approach needs to support the structural strength integrity for the used material. In this study, fatigue crack propagation behavior was investigated to super duplex stainless steel with 0.2% nitrogen. The various volume fraction and distribution of austenite structure for applied specimen in test were obtained by changing the heat treatment temperature and cycle. From test results, fatigue crack propagation rate showed two kinds of tendency between da/dN and ${\Delta}K$ according to distribution of austenite structure and structure anisotropy.

Mixed Mode Fatigue Crack Propagation Behavior due to The Variation of Stress Ratio (응력비의 변화에 따른 혼합 모드 피로 균열 전파 거동)

  • Song, Sam-Hong;Choi, Ji-Hoon;Lee, Jeong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.286-291
    • /
    • 2001
  • Most cracks in the structure occur under mixed mode loadings and those propagation depend on the stress ratio very much. So, it is necessary to study the fatigue behavior under mixed mode loading as stress ratio changes. In this paper, fatigue crack propagation behavior was investigated respectively at stress ratio 0.1, 0.3, 0.5, 0.7 and we change loading application angle to $0^{\circ},\;30^{\circ},\;60^{\circ}$ to apply various loading. mode. The mode I and II stress intensity factors of CTS specimen used in this study were calculated by displacement extrapolation method using FEM(ABAQUS). Using both the study through the experiment and the theoretical study through FEM analysis, we studied the relation between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress condition and given loading mode condition, we studied what the dominant factors of the crack propagation rate were at each case.

  • PDF

A Study on the Probabilistic Nature of Fatigue Crack Propagation Life(II) -The Distribution of Crack Propagation Rate- (피로크랙 진전수명의 확률특성에 관한 연구 II)

  • 윤한용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1561-1567
    • /
    • 1990
  • Recently, some reports of experimental research on the distribution of fatigue crack propagation rate have been published, and the reliability evaluation using the results of research for the mechanical structure has been executed. Since the thicknesses of specimens used in the published reports are limited to the thin ones, the applicability of the results into the mechanical structure with another thickness seems to be doubtful. That is, not only the quantitative evaluation, but also qualitative evaluation of the effect of specimen thickness has not been executed. In this study, an experimental investigation has been done by using the new type automated multi-stage fatigue testing machine which was developed by the author. The influence of specimen thickness for the distribution of fatigue crack propagation rate with the results is discussed.

Fatigue Crack Growth Behavior of NR and HNBR Based Vulcanizates with Potential Application to Track Pad for Heavy Weight Vehicles

  • Kim, Wonho;Kim, Minyoung;Chang, Young-Wook;Shin, Jung-Eun;Bae, Jong-Woo
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.73-79
    • /
    • 2003
  • Generally, field performance of elastomeric track pad components has been poor, especially for the medium to heavy tonnage tracked vehicles, which are operated on the hilly cross-country course. The service life of these track pad, is affected not only by the terrain and environmental conditions but also by the speed, cornering, braking, weight of the vehicle, and the track tread design. In this research, modulus, tearing energy, and the rate of crack propagation of vulcanizates are evaluated by changing base materials to improve the service time of track pad. By increasing the contents of carbon black, modulus, tearing energy, and fatigue crack growth resistance of vulcanizates improved. Compared with the NR vulcanizate, the HNBR vulcanizate had a higher value of tearing energy. The rate of crack propagation of vulcanizates using smaller size carbon black was slower than that using larger size carbon black. When the HNBR was blended with the ZSC, the tearing energy of the vulcanizates was a little reduced because of the high modulus but the crack propagation rate was reduced significantly. In the relation between the crack propagation rate and the strain energy release rate, though up to 100% strain were applied to specimens, the slope on the log scale ($\beta$) varied between 1.72 and 2.3 with the kind of elastomer.

A Study on the fracture Mechanical Behavior of Cruciform Welded Joint With Fracture Cracks (십자형 필렛 용접 이음의 피로균열 에 대한 파괴 역학적 고찰)

  • 엄동석;강성원;유덕상
    • Journal of Welding and Joining
    • /
    • v.1 no.1
    • /
    • pp.37-46
    • /
    • 1983
  • This paper describes a study of fillet welded joint stressed perpendicular to the weld line. The finite element method was used to determine the stress intensity factor for cruciform joint at weld toe and root cracks according to variation of H/Tp, weld angle and main plate thickness. But, in this study, weld angle was fixed at 45.deg., since the variation of weld angle affect the stress intensity factor little, also main plate thickness was fixed. Pulsating tension fatigue test was done at the second phase of experiment. The work using the concepts of the fracture mechanics on the stable crack growth, was in the correlation of the experimental fatigue stress-life behavior because the fatigue behaviors of various joint geometries are related to the stress intensity factors calculated by F.E.M. analysis. Main results obtained are summarized as follows. 1) According to the propagation of toe crack, the variation of the stress intensity factor at root crack is obvious as H/Tp is smaller. 2) According to the propagation of root cracks, the change of the stress intensity factor of the toe is very large with propagation of root crack. 3) The calculation formula of the stress intensity factor of crack propagation at the root crack was obtained. 4) The calculation formula of the stress intensity factor at the toe cracks was obtained in similar manner. 5) From the results of experiment, the velocity of fatigue crack propagation at the weld toe and root was estimated.

  • PDF

Effect of Stress Ratio on Fatigue Crack Propagation Processing of Structural Steel (구조용강의 용접가공에 따른 피로균열진전에 미치는 응력비의 영향)

  • Park, Kyeong-Dong;Shin, Yeong-Jin;Lee, Ju-Yeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.65-71
    • /
    • 2006
  • The lightness of components required on marine and shipbuilding industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part on current industries. In this study, it is investigated about endurance and fatigue crack propagation rate of according to welding methods such as SMAW, FCAW and SAW commonly used for welding structures in present. Endurance limits carried out highly in the order of SMAW, FCAW, SAW and fatigue crack propagation rate out lowly in the order of SMAW, FCAW, SAW. By these results, it is needed to use SMAW welding method for welding structures with small welding capacity and FCAW, SAW methods for large welding structures after consideration about economic gains and operation efficiency of welding. Fatigue crack propagation rate is more affected by strength of welding materials than endurance limit of welding materials according to welding methods.

  • PDF