• Title/Summary/Keyword: Propagation Factor

Search Result 736, Processing Time 0.026 seconds

Effect of the Stiffness of Ingerface Defect on Dynamic Interface Crack propagation (계면에 존재하는 결함의 강성도가 동적 계면균열전파에 미치는 영향)

  • 이억섭;윤해룡;황시원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.671-674
    • /
    • 2001
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of the interface crack. This paper investigates the effects of the stiffness of interface defect(exist along the path of the crack propagation) on the dynamic interface crack propagation behavior by comparing the experimental isochromatic fringes to the theoretical stress fields.

  • PDF

Effect of Interface Hole Shape on Dynamic Interface Crack propagation (계면에 존재하는 결함의 모양이 동적 계면균열전파에 미치는 영향)

  • 이억섭;윤해룡;조운기;황시원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.429-432
    • /
    • 2000
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of the interface crack. This paper investigates the effects of the hole (existed along the path of the crack propagation) shape on the dynamic interface crack propagation behavior by comparing the experimental isochromatic fringes to the theoretical stress fields.

  • PDF

Sensitivity and Error Propagation Factors for Three-Parameter Ellipsometry

  • Ihm, Hye-Ran;Chung, Gyu-Sung;Paik, Woon-Kie;Lee, Duck-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.976-980
    • /
    • 1994
  • The sensitivity factors and the error propagation factors are defined for the three-parameter ellipsometry (TPE). The sensitivity factor is useful for understanding the nature of the TPE measurements in connection with determination of the optical properties and the thickness of a film. On the other hand, the error propagation factors provide a quantitative tool for predicting the optimum condition for TPE experiments. Their usefulness is demonstrated for the passive film formed on nickel in aqueous solution.

An Enhanced Approach for a Prediction Method of the Propagation Characteristics in Korean Environments at 781 MHz

  • Jung, Myoung-Won;Kim, Jong Ho;Choi, Jae Ick;Kim, Joo Seok;Kim, Kyungseok;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.911-921
    • /
    • 2012
  • In high-speed wireless communications, an analysis of the propagation characteristics is an important process. Information on the propagation characteristics suitable for each environment significantly helps in the design of mobile communications. This paper presents the analysis results of radio propagation characteristics in outdoor environments for a new mobile wireless system at 781 MHz. To avoid the interference of Korean DTV broadcasting, we measure the channel characteristics in urban, suburban, and rural areas on Jeju Island, Republic of Korea, using a channel sounder and $4{\times}4$ antenna. The path loss (PL) measurement results differ from those of existing propagation models by more than 10 dB. To analyze the frequency characteristics for Korean propagation environments, we derive various propagation characteristic parameters: PL, delay spread, angular spread, and K-factor. Finally, we verify the validity of the measurement results by comparing them with the actual measurement results and 3D ray-tracing simulation results.

A Study on LEE Model Application for Propagation Loss Estimation of UHF band in Mountain Area (산악지형에서의 UHF대역 전파손실예측을 위한 LEE모델 적용방안 연구)

  • Lee, Changwon;Jeon, Yongchan;Shin, Imseob;Kim, Jin-Goog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we have compared some radio propagation models in order to verify the performance of W.C.Y LEE propagation model in mountain area. The four propagation models, which are Okumura-Hata, ITU-R P.525, Egli and W.C.Y. LEE, are analyzed by comparing the differences between measured values and propagation loss estimation values. And a correction method for W.C.Y LEE model is suggested to improve the performance of W.C.Y. LEE model with measured data in mountain area. Simulation results show that the estimation error using W.C.Y LEE model is the lowest among four propagation models. Also, the results show that the corrected W.C.Y LEE model with suggested method improves the performance of propagation loss estimation.

Fast Stereo matching based on Plane-converging Belief Propagation using GPU (Plane-converging Belief Propagation을 이용한 고속 스테레오매칭)

  • Jung, Young-Han;Park, Eun-Soo;Kim, Hak-Il;Huh, Uk-Youl
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.88-95
    • /
    • 2011
  • Stereo matching is the research area that regarding the estimation of the distance between objects and camera using different view points and it still needs lot of improvements in aspects of speed and accuracy. This paper presents a fast stereo matching algorithm based on plane-converging belief propagation that uses message passing convergence in hierarchical belief propagation. Also, stereo matching technique is developed using GPU and it is available for real-time applications. The error rate of proposed Plane-converging Belief Propagation algorithm is similar to the conventional Hierarchical Belief Propagation algorithm, while speed-up factor reaches 2.7 times.

A Prediction of Initial Fatigue Crack Propagation Life in a notched Component Taking Elasto-Plastic Behavior (탄소성 응력집중부에서의 초기피로균열전파수명의 예측)

  • Cho, Sang-Myung;Kohsuke Horikawa
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.61-70
    • /
    • 1988
  • In order to consider the concept of the fitness for purpose'in fatigue design of offshore structure, fracture mechanics is applied to evaluate initial or weld defects. Generally, linear elastic fracture mechanics has been applied to tstimate initial fatigue crack propagation rate as well as long fatigue crack propagation rate. But, initial fatigue crack propagation rate in elasto-plastic notch field may not be characterized by application of stress intensity factor range .DELTA. K, because plastic effect due to stress concentration of notch may contribute to initial crack propagation. Therefore, to introduce the plastic effect into fatigue crack driving force, in this studty, the evaluating method of J-integral range .DELTA. J, was developed by willson was modified for application to notch field. In calculation of .DELTA. J obtained from the modified J-integral, stress gradient and crack closure behavior in the notch field were considered. The initial crack propagation rates in the notch fields of mild steels and high tensile strength steels were correlated to .DELTA. J. As the result, it was cleared that the present .DELTA. J is applicable to charachterize the fatigue crack propagation rates in both the elastic and elasto-plastic notch fields.

  • PDF

Mechanism of Environmentally-Induced Stress Corrosion Cracking of Zr-Alloys

  • Park, Sang Yoon;Kim, Jun Hwan;Choi, Byung Kwon;Jeong, Yong Hwan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.170-176
    • /
    • 2007
  • Iodine-induced stress corrosion cracking (ISCC) properties and the associated ISCC process of Zircaloy-4 and an Nb-containing advanced nuclear fuel cladding were evaluated. An internal pressurization test with a pre-cracked specimen was performed with a stress-relieved (SR) or recrystallized (RX) microstructure at $350^{\circ}C$, in an iodine environment. The results showed that the $K_{ISCC}$ of the SR and RX Zircaloy-4 claddings were 3.3 and 4.8MPa\;m^{0.5}, respectively. And the crack propagation rate of the RX Zircaloy-4 was 10 times lower than that of the SR one. The chemical effect of iodine on the crack propagation rate was very high, which was increased $10^4$ times by iodine addition. Main factor affecting on the micro-crack nucleation was a pitting formation and its agglomeration along the grain boundary. However, this pitting formation on the grain-boundary was suppressed in the case of an Nb addition, which resulted in an increase of the ISCC resistance when compared to Zircaloy-4. Crack initiation and propagation mechanisms of fuel claddings were proposed by a grain boundary pitting model and a pitting assisted slip cleavage model and they showed reasonable results.

Fatigue Life Assessment of Ship Structures based on Crack Propagation Analysis -Simplified Prediction Method of Stress Intensity Factors- (균열전파해석에 의한 선체의 피로수명 평가법 -응력강도계수의 간이추정법-)

  • C.W. Kim;I.S. Nho;D.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.90-99
    • /
    • 2002
  • The prediction of stress intensity factor(SIF) is one of the most important factors to analyse the propagation behavior of cracks in hull structural members. Up to now, however, simplified prediction method of SIF has not yet been established for the cracks experienced in large complex structures. As a first step to predict crack propagation behavior in a ship structure with very large structural redundancies, simplified SIF prediction formulas for various crack shapes were derived based on the results of the stress analysis under a non-crack condition in this study. The adequacy of the proposed method was then verified in comparison with other experimental and analysis results.

Propagation Characteristics of a Surface Crack on a Semi-Infinite Body Due to Frictional Heating (마찰열에 의한 반무한체 표면균열의 전파특성)

  • Park, Jun-Ho;Park, Eun-Ho;Kim, Chae-Ho;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3126-3134
    • /
    • 1996
  • In this paper, to examine the propagation of inclined surface crack due to frictional heating, analytic model is considered as the semi-infinite elastic body subjected to the thermo-mechanical loading of an asperity moving with a high speed. Considering the moving of frictional heat source and convection on a semi-infinite surface having inclined crack, theoretical analysis was carried out to estimate the propagation characteristics of thermo-mechanical crack. Numerical results showed that stress intensity factor $K_\prod/P_0\sqrt{c}$ is increasing with increasing velocity and frictional coefficient, inclined degree, decreasing crack length and the maximum value of it is positioned at the trailing edge. So it is shown that the propagation probability of surface crack is high at the trailing edge of contact area as increasing velocity and frictional coefficient, inclined degree, as decreasing crack length.