• Title/Summary/Keyword: Promoter-10 region

Search Result 391, Processing Time 0.029 seconds

Identification and Characterization of a Putative Baculoviral Transcriptional Factor IE-1 from Choristoneura fumiferana Granulovirus

  • Rashidan, Kianoush Khajeh;Nassoury, Nasha;Merzouki, Abderrazzak;Guertin, Claude
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.553-561
    • /
    • 2002
  • A gene that encodes a protein homologue to baculoviral IE-1 was identified and sequenced in the genome of the Choristoneura fumiferana granulovirus (ChfuGV). The gene has an 1278 nucleotide (nt) open-reading frame (ORF) that encodes 426 amino acids with an estimated molecular weight of 50.33 kDa. At the nucleotide level, several cis-acting regulatory elements were detected within the promoter region of the ie-1 gene of ChfuGV along with other studied granuloviruses (GVs). Two putative CCAAT elements were detected within the noncoding leader region of this gene; one was located on the opposite strand at -92 and the other at -420 nt from the putative start triplet. Two baculoviral late promoter motifs (TAAG) were also detected within the promoter region of the ie-1 gene of ChfuGV. A single polyadenylation signal, AATAAA, was located 18nt downstream of the putative translational stop codon of ie-1 from ChfuGV. At the protein level, the amino acid sequence data that was derived from the nucleotide sequence in ChfuGV IE-1 was compared to those of the Cydia pomonella granulovirus (CpGV), Xestia c-nigrum granulovirus (XcGV) and Plutella xylostella granulovirus (PxGV). The C-terminal regions of the granuloviral IE-1 sequences appeared to be more conserved when compared to the N-terminal regions. A domain, similar to the basic helix-loop-helix like (bHLH-like) domain in NPVs, was detected at the C-terminal region of IE-1 from ChfuGV (residues 387 to 414). A phylogenetic tree for baculoviral IE-1 was constructed using a maximum parsimony analysis. A phylogenetic estimation demonstrates that ChfuGV IE-1 is most closely related to that of CpGV.

Regulation of Acetyl-CoA Carboxylase Gene Expression by Hormones and Nutrients

  • Kim, Youn-Jung;Yang, Jeong-Lye;Kwun, In-Sook;Kim, Yang-Ha
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.61-65
    • /
    • 2003
  • This study was investigated to identify the regulatory mechanism of ACC gene expression by hormones and nutrition. The fragment of ACC promoter I (PI) -220 bp region was recombined to pGL3-Basic vector with luciferase as a reporter gene. The primary hepatocyte from the rat was used to investigate the regulation of ACC PI activity. ACC PI (-220 bp)/luciferase chimeric plasmid was transfected into primary rat hepatocyte by using lipofectin. ACC PI activity was shown by measuring luciferase activity. The addition of insulin, dexamethasone, and triiodothyronine to the culture medium increased the activity of ACC PI by 2.5-, 2.3- and 1.8-fold, respectively. In the presence of 1 $\mu$M dexamethasone, the effects of insulin was amplified about 1.2-fold showing the additional effects of dexamethasone. Moreover the activity of luciferase was increased by insulin, dexamethasone, and triiodothyronine treatment approximately 4-fold. These results indicated that insulin, dexamethasone and thyroid hormone coordinately regulate ACC gene expression via regulation of promoter I activity. On the -220 to +21 region of ACC PI, the addition of the glucose to the culture medium increased the activity of ACC PI. With 25 mM glucose, luciferase activity increased by 7-fold. On the other hand, on the -220 bp region, ACC PI activity was not changed by polyunsaturated fatty acids. Therefore, it can be postulated that there are response elements for insulin, triiodothyronine, dexamethasone, and glucose, but not PUFAs on the -220 bp region of ACC PI.

HeLa E-Box Binding Protein, HEB, Inhibits Promoter Activity of the Lysophosphatidic Acid Receptor Gene Lpar1 in Neocortical Neuroblast Cells

  • Kim, Nam-Ho;Sadra, Ali;Park, Hee-Young;Oh, Sung-Min;Chun, Jerold;Yoon, Jeong Kyo;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.123-134
    • /
    • 2019
  • Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as $LPA_{1-6}$. For one of its receptors, $LPA_1$ (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.

Cloning and Characterization of a Gene Encoding 22 kDa Functional Protein of Bacteriophage MB78

  • Gupta, Lalita;Chakravorty, Maharani
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.161-166
    • /
    • 2005
  • Functional protein of MB78 bacteriophage having apparent molecular weight of 22 kDa is expressed from 1.7 kb HindIII G fragment. The nucleotide sequence of this fragment showed two open reading frames of 222 and 196 codons in tail-to-tail orientation separated by a 62-nucleotide intercistronic region. The ORF of 22 kDa protein is present in opposite orientation, i.e. in the complementary strand, preceded by a strong ribosomal binding site and a promoter sequence. Another ORF started from the beginning of the fragment whose promoter region and translational start site lies in the 0.45 kb HincII U fragment which is located next to the HindIII G fragment, that has the sequence for DNA bending. 3' end of the fragment has high sequence homology to the EaA and EaI proteins of bacteriophage P22, a close relative of MB78 phage.

Application of a Promoter Isolated from Chlorella Virus in Chlorella Transformation System

  • Park, Hyoun-Hyang;Park, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.158-163
    • /
    • 2004
  • Chlorella is a eukaryotic microalgae which shares metabolic pathways with higher plants. These charac-teristics make chlorella a potential candidate for eukaryotic overexpression systems. Recently, a foreign flounder growth hormone gene was stably introduced and expressed in transformed Chlorella ellipsoidea by using a modified plant transformation vector that contains cauliflower mosaic virus (CaMV) 35S pro-moter and the phleomycin resistant Sh ble gene as a selection marker. In this study, this same vector was modified by incorporating a promoter and a 3' UTR region of the 33kDa peptide gene from a chlorella virus that was isolated in our laboratory. The 33kDa gene promoter was used to replace the 35S promoter and the 3' UTR was introduced to separate the target gene and downstream Sh ble gene. Three different chlorella transformation vectors containing human erythropoietin (EPO) gene were constructed. The mp335EPO vector consists of a promoter from the 33kDa peptide gene, whereas the mp3353EPO vector contains the same promoter from the 33kDa peptide gene and its 3' UTR. The mp35S33pEPO vector contains the 35S promoter and the 3' UTR from the 33 kDa peptide gene. There was no significant difference in the expression levels of EPO protein in chlorella cells transformed with either of three of the transformation vectors. These data indicate that the promoters from the chlorella virus are comparable to the most common CaMV 35S promoter. Furthermore, these data suggest that other promoters from this virus can be used in future construction of chlorella transformation system for higher expression of target proteins.

Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes

  • Yeo, Hyunjin;Lee, Jeong Yeon;Kim, JuHwan;Ahn, Sung Shin;Jeong, Jeong You;Choi, Ji Hye;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.323-328
    • /
    • 2020
  • Matrix metalloproteinase 1 (MMP-1), a calcium-dependent zinccontaining collagenase, is involved in the initial degradation of native fibrillar collagen. Tissue necrosis factor-alpha (TNFα) is a pro-inflammatory cytokine that is rapidly produced by dermal fibroblasts, monocytes/macrophages, and keratinocytes and regulates inflammation and damaged-tissue remodeling. MMP-1 is induced by TNFα and plays a critical role in tissue remodeling and skin aging processes. However, the regulation of the MMP1 gene by TNFα is not fully understood. We aimed to find additional cis-acting elements involved in the regulation of TNFα-induced MMP1 gene transcription in addition to the nuclear factor-kappa B (NF-κB) and activator protein 1 (AP1) sites. Assessments of the 5'-regulatory region of the MMP1 gene, using a series of deletion constructs, revealed the requirement of the early growth response protein 1 (EGR-1)-binding sequence (EBS) in the proximal region for proper transcription by TNFα. Ectopic expression of EGR-1, a zinc-finger transcription factor that binds to G-C rich sequences, stimulated MMP1 promoter activity. The silencing of EGR-1 by RNA interference reduced TNFα-induced MMP-1 expression. EGR-1 directly binds to the proximal region and transactivates the MMP1 gene promoter. Mutation of the EBS within the MMP1 promoter abolished EGR-1-mediated MMP-1 promoter activation. These data suggest that EGR-1 is required for TNFα-induced MMP1 transcriptional activation. In addition, we found that all three MAPKs, ERK1/2, JNK, and p38 kinase, mediate TNFα-induced MMP-1 expression via EGR-1 upregulation. These results suggest that EGR-1 may represent a good target for the development of pharmaceutical agents to reduce inflammation-induced MMP-1 expression.

Characterization of the Nar Promoter Modified by Site-directed Mutagenesis to Use as an Expression Promoter (특정부위돌연변이화에 의해 변형된 nar 프로모터를 발현 프로모터로 이용하기 위한 특성연구)

  • 이종원
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.431-437
    • /
    • 1996
  • The nar promoter of Escherichta coli, which is maximally induced under anaerobic conditions in the presence of nitrate, was characterized to see whether the nar promoter cloned onto pBR322 can be used as an expression promoter. The modified nar promoter, in which several bases in the -10 region was mutated to the consensus sequence by site-directed mutagenesis, was characterized in E. coli, on which chromosome the fnr gene affecting expression of the nar promoter according to dissolved oxygen level was mutated. The E. coli lacZ gene was used as a reporter gene. The following effects were investigated to find optimal conditions to induce the modified nar promoter: induction methods, optimal nitrate concentrations, the amount of ${\beta}$-galactosidase expressed at the different growth conditions, and induction characteristics. The following results were obtained from the experiments : expression of ${\beta}$-galactosidase from the modified nar promoter was not affected much by nitrate concentrations. The maximal specific ${\beta}$-galactosidase activity was obtained when E. coli was grown under aerobic conditions, and then the modified nar promoter was induced at OD600=2.2 under microaerobic conditions (DO=1∼2%), under which conditions the maximal specific ${\beta}$-galactosidase activity was 13,000 Miller units. However, the specific ${\beta}$-galactosidase activity was approximately 6,000 Miller units even before the modified nar promoter was induced. Therefore, the modified nar promoter seemed to be useful when the cloned gene wants to be expressed in E. coli constitutively.

  • PDF

The use of SlAdh2 promoter as a novel fruit-specific promoter in transgenic tomato

  • Chung, Mi-Young;Naing, Aung Htay;Vrebalov, Julia;Shanmugam, Ashokraj;Lee, Do-Jin;Park, In Hwan;Kim, Chang Kil;Giovannon, James
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.172-178
    • /
    • 2020
  • Fruit-specific promoters play an important role in the improvement of traits, such as fruit quality through genetic engineering. In tomato, the development of fruit-specific promoters was previously reported, but less attention has been paid to the promoters involved in the fruit development stage. In this study, we characterized the gene expression patterns of tomato alcohol dehydrogenase 2 (SlAdh2) in various tissues of wild-type tomato (cv. Ailsa Craig). Our findings revealed that SlAdh2 expression levels were higher in the developing fruit than in the leaves, stems, and flowers. The ProSlAdh2 region, which is expressed at different stages of fruit development, was isolated from tomato genomic DNA. Following this, it was fused with a β-glucuronidase reporter gene (GUS) and introduced into wild-type tomato using Agrobacterium-mediated transformation to evaluate promoter activity in the various tissues of transgenic tomato. The ProSlAdh2:GUS promoter exhibited strong activity in the fruit and weak activity in the stems, but displayed undetectable activity in the leaves and flowers. Interestingly, the promoter was active from the appearance of the green fruit (1 cm in size) to the well-ripened stage in transgenic tomatoes, indicating its suitability for transgene expression during fruit development and ripening. Thus, our findings suggest that ProSlAdh2 may serve as a potential fruit-specific promoter for genetic-based improvement of tomato fruit quality.

Detection of Antistaphylococcal and Toxic Compounds by Biological Assay Systems Developed with a Reporter Staphylococcus aureus Strain Harboring a Heat Inducible Promoter - lacZ Transcriptional Fusion

  • Chanda, Palas Kumar;Ganguly, Tridib;Das, Malabika;Lee, Chia Yen;Luong, Thanh T.;Sau, Subrata
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.936-943
    • /
    • 2007
  • Previously it was reported that promoter of groES-groEL operon of Staphylococcus aureus is induced by various cellwall active antibiotics. In order to exploit the above promoter for identifying novel antistaphylococcal drugs, we have cloned the promoter containing region ($P_g$) of groES-groEL operon of S. aureus Newman and found that the above promoter is induced by sublethal concentrations of many antibiotics including cell-wall active antibiotics. A reporter S. aureus RN4220 strain (designated SAU006) was constructed by inserting the $P_g$-lacZ transcriptional fusion into its chromosome. Agarose-based assay developed with SAU006 shows that $P_g$ in single-copy is also induced distinctly by different classes of antibiotics. Data indicate that ciprofloxacin, rifampicin, ampicillin, and cephalothin are strong inducers, whereas, tetracycline, streptomycin and vancomycin induce the above promoter weakly. Sublethal concentrations of ciprofloxacin and ampicilin even have induced $P_g$ efficiently in microtiter plate grown SAU006. Additional studies show for the first time that above promoter is also induced weakly by arsenate salt and hydrogen peroxide. Taken together, we suggest that our simple and sensitive assay systems with SAU006 could be utilized for screening and detecting not only novel antistaphylococcal compounds but also different toxic chemicals.

The Function of Multiple Pribnow Box on the Aerobic-Anaerobic Switch Control of aeg-46.5 Gene Expression

  • Gang, In O;Jeong, Yeon Ju;Choe, Mu Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.903-908
    • /
    • 2001
  • The gene aeg-46.5, which is expressed under anaerobic condition, has putative triple -10 regions and four transcription start sites. The mRNA transcription level and its start point change depending on the aerobic/anaerobic growth condition. RNA polymerase and its regulatory proteins must choose which of three -10 region to use. The putative triple 10 region was mutated to make only one of them function with consensus -10 region sequence (TATAAT) and the other two as non-functional region. The results show that the second and third -10 regions are used for the aerobic/anaerobic expression. The third -10 region is responsible for the high aerobic to anaerobic switch ratio. This suggests that only the last two of the putative triple -10 region have functions on aeg-46.5 gene expression switch control. The phenotype of the mutated promoter was tested in the wild type cell and narL - cell. The results indicate that the control by NarL is independent from the selection of -10 region. The expression patterns on multi-copy plasmids and on single-copy chromosome were compared. These results show that the aerobic/anaerobic switch control of aeg-46.5 is through the choice of -10 region. The mechanism of choosing different -10 region remains to be seen.