• 제목/요약/키워드: Promoter activation

검색결과 267건 처리시간 0.021초

Nanosphere Form of Astaxanthin Restores the Mucin Depletion Induced by V. vulnificus

  • Kim, Ji-Yun;Kim, Ju Ha;Lee, Sei-Jung
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2020년도 정기학술대회 발표논문집
    • /
    • pp.220-220
    • /
    • 2020
  • Astaxanthin, a natural carotenoid component of shrimp, has been used as a food additive for the treatment of various diseases, but a functional role of Astaxanthin Nanosphere (AN) in the regulation of intestinal mucin (Muc) 2 production during bacterial infection has not described yet. In this study, we have investigated the effect of AN prepared from astaxanthin during Muc2 repression elicited by the Gram-negative bacterium V. vulnificus in human gastrointestinal epithelial (HT-29) cells. AN significantly inhibited the level of ROS production and PKC activation in recombinant protein (r) VvpE-stimulated HT-29 cells. Moreover, AN inhibited the PKC-mediated phosphorylation of extracellular signal-regulated kinase and nuclear factor-kappa B responsible for region-specific hypermethylation in the Muc2 promoter in rVvpE-treated HT-29 cells. In the mouse models of V. vulnificus infection, treatment with AN maintained the level of Muc2 expression in the intestine. On the basis of these results, we suggest that AN blocks the hypermethylation of the Muc2 promoter to restore the level of Muc2 production in HT-29 cells infected with V. vulnificus.

  • PDF

${\alpha}1$,3-Galactosyltransferase 유전자 좌위에서 Membrane Cofactor Protein을 효과적으로 발현하는 자성 돼지 섬유아세포의 생산 (Generation of Female Porcine Fibroblasts Expressing Efficiently Membrane Cofactor Protein at ${\alpha}1$,3-Galactosyltransferase locus)

  • 오건봉;김벨라;황성수;옥선아;임석기;박진기
    • 한국수정란이식학회지
    • /
    • 제28권3호
    • /
    • pp.289-295
    • /
    • 2013
  • Xenotransplantation of pig organs into primates results in fatal damage, referred as hyperacute rejection (HAR), and acute humoral xenograft rejection (AHXR), to the organ graft mediated by antibodies pre-existing and newly-producing in primates against their cognate pig antigens. Functional ablation of ${\alpha}1$,3-galactosyltransferase (Gal-T KO) of pig which is an enzyme involved in synthesis of Gala1-3Galb1-4GlcNAc-R antigen is essentially required to prevent HAR. Moreover, additional genetic modification under Gal-T KO background for enforced expression of human complement regulatory proteins which can inhibits complement activation is known to effectively imped HAR and AHXR. In this study, we constructed a membrane cofactor protein (MCP) expression cassette under control of human $EF1{\alpha}$ promoter. This cassette was inserted between homologous recombination regions corresponding to Gal-T locus. Subsequently this vector was introduced into ear skin fibroblasts of female pig by nucleofection. We were able to obtained 40 clones by neomycin selection and 4 clones among them were identified as clones targeted into Gal-T locus of MCP expression cassette by long-range PCR. Real time RT-PCR was shown to down-regulation of Gal-T expression. From these results, we demonstrated human $EF1{\alpha}$ promoter could induce efficient expression of MCP on cell surface of fibroblasts of female pig.

NF-κB-dependent Regulation of Matrix Metalloproteinase-9 Gene Expression by Lipopolysaccharide in a Macrophage Cell Line RAW 264.7

  • Rhee, Jae-Won;Lee, Keun-Wook;Kim, Dong-Bum;Lee, Young-Hee;Jeon, Ok-Hee;Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.88-94
    • /
    • 2007
  • Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in the turnover of extracellular matrix (ECM) and in the migration of normal and tumor cells in response to normal physiologic and numerous pathologic conditions. Here, we show that the transcription of the MMP-9 gene is induced by lipopolysaccharide (LPS) stimulation in cells of a macrophage lineage (RAW 264.7 cells). We provide evidence that the NF-$\kappa$B binding site of the MMP-9 gene contributes to its expression in the LPS-signaling pathway, since mutation of NF-$\kappa$B binding site of MMP-9 promoter leads to a dramatic reduction in MMP-9 promoter activation. In addition, the degradation of l$\kappa$B$\alpha$;, and the presences of myeloid differentiation protein (MyD88) and tumor necrosis factor receptor-associated kinase 6 (TRAF6) were found to be required for LPS-activated MMP-9 expression. Chromatin immunoprecipitation (ChIP) assays showed that functional interaction between NF-$\kappa$B and the MMP-9 promoter element is necessary for LPS-activated MMP-9 induction in RAW 264.7 cells. In conclusion, our observations demonstrate that NF-$\kappa$B contributes to LPS-induced MMP-9 gene expression in a mouse macrophage cell line.

SUMO Proteins are not Involved in TGF-${\beta}1$-induced, Smad3/4-mediated Germline ${\alpha}$ Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

  • Lee, Sang-Hoon;Kim, Pyeung-Hyeun;Oh, Sang-Muk;Park, Jung-Hwan;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • 제14권6호
    • /
    • pp.321-327
    • /
    • 2014
  • TGF-${\beta}$ induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-${\beta}$ signal-transducing transcription factors, mediate germline (GL) ${\alpha}$ transcription induced by TGF-${\beta}1$, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-${\beta}$-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity, expression of endogenous $GL{\alpha}$ transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity. We found that PIASy overexpression suppresses the $GL{\alpha}$ promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of $GL{\alpha}$ transcription and IgA switching induced by TGF-${\beta}1$/Smad3/4, while PIASy acts as a repressor.

Activation of ATM/Akt/CREB/eNOS Signaling Axis by Aphidicolin Increases NO Production and Vessel Relaxation in Endothelial Cells and Rat Aortas

  • Park, Jung-Hyun;Cho, Du-Hyong;Hwang, Yun-Jin;Lee, Jee Young;Lee, Hyeon-Ju;Jo, Inho
    • Biomolecules & Therapeutics
    • /
    • 제28권6호
    • /
    • pp.549-560
    • /
    • 2020
  • Although DNA damage responses (DDRs) are reported to be involved in nitric oxide (NO) production in response to genotoxic stresses, the precise mechanism of DDR-mediated NO production has not been fully understood. Using a genotoxic agent aphidicolin, we investigated how DDRs regulate NO production in bovine aortic endothelial cells. Prolonged (over 24 h) treatment with aphidicolin increased NO production and endothelial NO synthase (eNOS) protein expression, which was accompanied by increased eNOS dimer/monomer ratio, tetrahydrobiopterin levels, and eNOS mRNA expression. A promoter assay using 5'-serially deleted eNOS promoters revealed that Tax-responsive element site, located at -962 to -873 of the eNOS promoter, was responsible for aphidicolin-stimulated eNOS gene expression. Aphidicolin increased CREB activity and ectopic expression of dominant-negative inhibitor of CREB, A-CREB, repressed the stimulatory effects of aphidicolin on eNOS gene expression and its promoter activity. Co-treatment with LY294002 decreased the aphidicolin-stimulated increase in p-CREB-Ser133 level, eNOS expression, and NO production. Furthermore, ectopic expression of dominant-negative Akt construct attenuated aphidicolin-stimulated NO production. Aphidicolin increased p-ATM-Ser1981 and the knockdown of ATM using siRNA attenuated all stimulatory effects of aphidicolin on p-Akt-Ser473, p-CREB-Ser133, eNOS expression, and NO production. Additionally, these stimulatory effects of aphidicolin were similarly observed in human umbilical vein endothelial cells. Lastly, aphidicolin increased acetylcholine-induced vessel relaxation in rat aortas, which was accompanied by increased p-ATM-Ser1981, p-Akt-Ser473, p-CREB-Ser133, and eNOS expression. In conclusion, our results demonstrate that in response to aphidicolin, activation of ATM/Akt/CREB/eNOS signaling cascade mediates increase of NO production and vessel relaxation in endothelial cells and rat aortas.

Intracellular Signaling Pathways for Type II IgE Receptor (CD23) Induction by Interleukin - 4 and Anti - CD40 Antibody

  • Kim, Hyun-Il;Park, Hee-Jeoung;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제30권6호
    • /
    • pp.431-437
    • /
    • 1997
  • Since the role of CD40 on the interleukin-4(IL-4) -induced B cell activation has been strongly implicated in the agumentation of IgE production and response, we have investigated the intracelluar signaling pathways utilized by IL-4 and CD40 for type II IgE receptor (CD23) expression. IL-4 and anti-CD40 antibody treatment of human B cells, independently caused a rapid induction of CD23 gene activation within 2 h. There was a noticeable synergism between the action of the two agents inducing CD23 expression: the addition of anti-CD40 to the IL-4-treated culture significantly agumented the IL-4-induced CD23 on both mRNA and surface protein levels, and the inclusion of IL-4 in the anti-CD40-treated cells caused a further increase of CD23 expression far above the maximal level induced by anti-CD40. Protein tyrosine kinase (PTK) inhibitors effectively suppressed the both IL-4- and anti -CD40-induced CD23 expression. whereas protein kinase C (PKC) inhibitors had no effects. Electrophoretic mobility shift assays (EMSA) have shown that IL-4 and anti-CD40 induce the activation of NF-IL-4 and $NF-_{K}B$, respectively, binding to the CD23 promoter, both in a PKC-independent and PTK-dependent manner. These data suggest that the synergistic activation of CD23 gene expression by IL-4 and anti-CD40 is mediated by co-operative action of distinct nuclear factors. each of which is rapidly activated via PKC-independent and PTK-dependent process.

  • PDF

Chemopreventive Activity of Turmeric Essential Oil and Possible Mechanisms of Action

  • Liju, Vijayasteltar Belsamma;Jeena, Kottarapat;Kuttan, Ramadasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6575-6580
    • /
    • 2014
  • This study aimed to evaluate the antimutagenic and anticarcinogenic activity of turmeric essential oil as well as to establish biochemical mechanisms of action. Antimutagenicity testing was accomplished using strains and known mutagens with and without microsomal activation. Anticarcinogenic activity was assessed by topical application of 7, 12 - dimethylbenz[a]anthracene (DMBA) as initiator and 1% croton oil as promoter for the induction of skin papillomas in mice. Inhibition of p450 enzymes by TEO was studied using various resorufins and aminopyrene as substrate. Turmeric essential oil (TEO) showed significant antimutagenic activity (p<0.001) against direct acting mutagens such as sodium azide ($NaN_3$), 4-nitro-O-phenylenediamine (NPD) and N-methyl-N-nitro N'nitrosoguanine (MNNG). TEO was found to have significant antimutagenic effect (>90%) against mutagen needing metabolic activation such as 2-acetamidoflourene (2-AAF). The study also revealed that TEO significantly inhibited (p<0.001) the mutagenicity induced by tobacco extract to Salmonella TA 102 strain. DMBA and croton oil induced papilloma development in mice was found to be delayed and prevented significantly by TEO application. Moreover TEO significantly (P<0.001) inhibited isoforms of cytochrome p450 (CYP1A1, CYP1A2, CYP2B1/2, CYP2A, CYP2B and CYP3A) enzymes in vitro, which are involved in the activation of carcinogens. Results indicated that TEO is antimutagenic and anticarcinogenic and inhibition of enzymes (p450) involved in the activation of carcinogen is one of its mechanisms of action.

Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages

  • Kim, Ga-Young;Jeong, Hana;Yoon, Hye-Young;Yoo, Hye-Min;Lee, Jae Young;Park, Seok Hee;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.640-645
    • /
    • 2020
  • Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS signal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.

Inhibitory Effects of Coptis japonica Alkaloids on the LPS-Induced Activation of BV2 Microglial Cells

  • Jeon, Se-Jin;Kwon, Kyung-Ja;Shin, Sun-Mi;Lee, Sung-Hoon;Rhee, So-Young;Han, Seol-Heui;Lee, Jong-Min;Kim, Han-Young;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Min, Byung-Sun;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.70-78
    • /
    • 2009
  • Coptis japonica (C. japonica) is a perennial medicinal plant that has anti-inflammatory activity. C. japonica contains numerous biologically active alkaloids including berberine, palmatine, epi-berberine, and coptisine. The most well-known anti-inflammatory principal in C. japonica is berberine. For example, berberine has been implicated in the inhibition of iNOS induction by cytokines in microglial cells. However, the efficacies of other alkaloids components on microglial activation were not investigated yet. In this study, we investigated the effects of three alkaloids (palmatine, epi-berberine and coptisine) from C. japonica on lipopolysaccharide (LPS)-induced microglial activation. BV2 microglial cells were immunostimulated with LPS and then the production of several inflammatory mediators such as nitric oxide (NO), reactive oxygen species (ROS) and matrix metalloproteinase-9 (MMP-9) were examined as well as the phosphorylation status of Erk1/2 mitogen activated protein kinase (MAPK). Palmatine and to a lesser extent epi-berberine and coptisine, significantly reduced the release of NO, which was mediated by the inhibition of LPS-stimulated mRNA and protein induction of inducible nitric oxide synthase (iNOS) from BV2 microglia. In addition to NO, palmatine inhibited MMP-9 enzymatic activity and mRNA induction by LPS. Palmatine also inhibited the increase in the LPS-induced MMP-9 promoter activity determined by MMP-9 promoter luciferase reporter assay. LPS stimulation increased Erk1/2 phosphorylation in BV2 cells and these alkaloids inhibited the LPS-induced phosphorylation of Erk1/2. The anti-inflammatory effect of palmatine in LPS-stimulated microglia may suggest the potential use of the alkaloids in the modulation of neuroinflammatory responses, which might be important in the pathophysiological events of several neurological diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD) and stroke.

배추 작물에 이원적 전사유도 시스템 도입을 위한 조기 검증방법 확립 (Establishment of Early Verification Method for Introduction of the Binary Trans-activation System in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis))

  • 김수윤;유희주;김정호;조명철;박미희
    • 원예과학기술지
    • /
    • 제31권1호
    • /
    • pp.95-102
    • /
    • 2013
  • 이원적 전사유도 시스템(binary trans-activation system)은 도입유전자의 발현을 조절하는 기작(mechanism) 중에 하나로, 목적 유전자의 발현이 전사활성 인자를 가지고 있는 식물체와의 교배를 통해서만 발현되는 시스템이다. 본 연구에서는 이원적 전사유도 시스템을 원예 작물의 우수한 유전자원 및 신품종 보호 방법으로 이용하고자, 배추에서 이 시스템의 기능을 검정하였다. 배추작물에서 이원적 전사유도 시스템의 이용가능성을 검정하기 위하여 activator construct(35SLhGBart)와 reporter construct(pOpGUS1300)를 작성하였고 공동형질전환방법으로 배추에 형질전환하였다. 두 종류의 카세트가 도입된 형질전환체는 항생제를 이용하여 선발하였으며, 재분화된 신초의 GUS 유전자 발현으로 이 시스템의 활성을 확인하였다. 또한 이 시스템을 조직 특이적으로 유도하기 위하여 애기장대의 자성 배우체 특이적 프로모터를 이용하여 activator construct(795LhGBart)를 작성하여 애기장대에 형질전환 하였다. 공동형질전환된 애기장대는 자성 배우체에서 조직 특이적인 발현을 나타냈다. 이러한 결과는 이원적 전사유도 시스템이 목적유전자의 발현을 배추의 $F_1$ 종자에서 선택적으로 유도하는 방법으로써 우수한 유전자원 및 신품종 보호에 이용될 수 있다는 것을 보여주는 것이라고 생각된다.