• Title/Summary/Keyword: Promoter Methylation

Search Result 198, Processing Time 0.02 seconds

Gene Silencing Induced by Cytosine Methylation in Transgenic Tomato (형질전환 토마토에서 Cytosine Methylation에 의한 유전자발현 억제)

  • Jung, Seo-Hee;Min, Sung-Ran;Lee, Soo-Young;Park, Ji-Young;Davarpanah, S Javad;Chung, Hwa-Jee;Jeon, Jae-Heung;Liu, Jang-Ryol;Jeong, Won-Joong
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.323-329
    • /
    • 2007
  • Transgene expression was analyzed in tomato plants. Four lines of neomycin phosphotransferase II gene (NPTII) and the trehalose biosynthetic fusion gene (TPSP) transformed $T_0$ plants showed kanamycin resistance on selection medium. However, the analysis of phenotype (kanamycin resistance) and mRNA expression in $T_1$ plants indicated that the expression of the NPTII and TPSP transgenes was down-regulated to an undetectable level in two independent lines 1 and 11. Southern analysis demonstrated that the lines 1 and 11 had multicopies of the transgenes, whereas the typical transgenic lines 2 and 10 had 1 or 2 copies. DNA methylation analysis using methylation sensitive enzyme detected accumulated CpG DNA methylation on TPSP coding region and CaMV35S promoter region in the line 11, but not the typical transgenic line 2. These results suggest that multicopy transgene in plants is attributed to down-regulation of the transgene expression via transcriptional gene silencing.

Molecular Mechanisms of Regulation of Human Cytochrome P4501A2 Gene Expression

  • Chung, In-Jae
    • Natural Product Sciences
    • /
    • v.10 no.5
    • /
    • pp.197-206
    • /
    • 2004
  • Cytochrome P4501A2 (CYP1A2) is responsible for the metabolic activation of a number of aromatic amines and amides to mutagenic and carcinogenic moieties. Considerable variations in the level of CYP1A2 expression in humans have been reported. Thus, the level of human CYP1A2 may determine an individuals susceptibility to these chemicals. Given its importance, the molecular mechanisms of CYP1A2 regulation have been studied by many groups. Direct interactions between transcription factors with the promoters of the gene represent one of the primary means by which the expression of CYP1A2 is controlled. In this review, several important cis elements, transcription factors and the effects of deacetylation/methylation of promoter regions that play an important role in the induction by PAHs as well as constitutive expression of human CYP1A2 are discussed.

Analysis of TIMP-2 and Vimentin Protein Expression and Epigenetic Reprogramming in Cloned Bovine Placentae

  • Kim, Hong-Rye;Han, Rong-Xun;Lee, Hye-Ran;Yoon, Jong-Taek;Cheong, Hee-Tae;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • The objective of this study was to analyzed pattern of proteins expression abnormally in cloned bovine placenta. TIMP-2 protein whose function is related to extracellular matrix degradation and tissue remodeling processes was one of differentially up-regulated proteins in SCNT placenta. And one of down-regulated protein in SCNT placenta was identified as vimentin protein that is presumed to stabilize the architecture of the cytoplasm. The expression patterns of these proteins were validated by Western blotting. To evaluate how regulatory loci. of TIMP-2 and vimentin genes was programmed reprogramming in cloned placenta. the status of DNA methylation in the promoter region of TIMP-2 and vimentin genes was analyzed by sodium Bisulfite mapping. The DNA methylation results showed that there was not difference in methylation pattern of TIMP-2 and vimentin loci between cloned and normal placenta. Histone H3 acetylation state of the nucleosome was analyzed in the cloned placental and normal placenta by Western blotting. A small portion of the protein lysates were subjected to Western blotting with the antibodies against anti acetyl-Histone H3. Overall histone H3 acetylation state of SCNT placenta was significantly higher than those of normal placenta cells. It is postulated that cloned placenta at the end of gestation seems to be unusual in function and morphology of placenta via improper expression of TIMP-2 and vimentin by abnormal acetylation states of cloned genome.

Epigenetic modification of α-N-acetylgalactosaminidase enhances cisplatin resistance in ovarian cancer

  • Ha, Ye-Na;Sung, Hye Youn;Yang, San-Duk;Chae, Yun Ju;Ju, Woong;Ahn, Jung-Hyuck
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Although cisplatin is one of the most effective antitumor drugs for ovarian cancer, the emergence of chemoresistance to cisplatin in over 80% of initially responsive patients is a major barrier to successful therapy. The precise mechanisms underlying the development of cisplatin resistance are not fully understood, but alteration of DNA methylation associated with aberrant gene silencing may play a role. To identify epigenetically regulated genes directly associated with ovarian cancer cisplatin resistance, we compared the expression and methylation profiles of cisplatin-sensitive and -resistant human ovarian cancer cell lines. We identified ${\alpha}$-N-acetylgalactosaminidase (NAGA) as one of the key candidate genes for cisplatin drug response. Interestingly, in cisplatin-resistant cell lines, NAGA was significantly down-regulated and hypermethylated at a promoter CpG site at position +251 relative to the transcriptional start site. Low NAGA expression in cisplatin-resistant cell lines was restored by treatment with a DNA demethylation agent, indicating transcriptional silencing by hyper-DNA methylation. Furthermore, overexpression of NAGA in cisplatin-resistant lines induced cytotoxicity in response to cisplatin, whereas depletion of NAGA expression increased cisplatin chemoresistance, suggesting an essential role of NAGA in sensitizing ovarian cells to cisplatin. These findings indicate that NAGA acts as a cisplatin sensitizer and its gene silencing by hypermethylation confers resistance to cisplatin in ovarian cancer. Therefore, we suggest NAGA may be a promising potential therapeutic target for improvement of sensitivity to cisplatin in ovarian cancer.

Gestational Exposure to Bisphenol A Causes DNA Hypomethylation and the Upregulation of Progesterone Receptor Expression in the Uterus in Adult Female Offspring Rats

  • Seung Gee Lee;Ji-Eun Park;Yong-Pil Cheon;Jong-Min Kim
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.195-203
    • /
    • 2023
  • Exposure to environmental chemicals, including endocrine-disrupting chemicals, during the gestational period can have profound adverse effects on several organs in offspring. Bisphenol A (BPA) can infiltrate the human body through food and drinks, and its metabolites can cross both the placental and the blood-brain barriers. In this study, we investigate the effect of gestational exposure to BPA on epigenetic, biochemical, and histological modifications in the uterine tissues of F1 adult offspring rats. Pregnant rats were exposed to BPA from gestational day 8-15, and changes in global DNA methylation in uterine tissues obtained from adult offspring born to the exposed mothers were analyzed. Global DNA methylation analysis revealed that gestational exposure to BPA resulted in DNA hypomethylation in the uterus. Progesterone receptor (PR) protein expression in uterine tissues was monitored using western blot analysis, which revealed that the PR protein content was considerably higher in all BPA-exposed groups than in the control. Immunohistochemical examination for the PR revealed that intense PR-positive cells were more frequently observed in the BPA-exposed group than in the control group. To date, the evidence that the upregulation of PRs observed in the present study was caused by the non-methylation of specific PR promoter regions is lacking. Conclusively, these results indicate that exposure to BPA during gestation induces epigenetic alterations in the uteri of adult female offspring. We speculate that the global DNA hypomethylation and upregulation of the PR observed simultaneously in this study might be associated with the uterus.

DNA Methylation of Multiple Genes in Gastric Cancer: Association with CpG Island Methylator Phenotype and Helicobocter pylori Infection (위암에서 유전자 메틸화와 CpG Island Methylator Phenotype 및 Helicobacter pylori균 감염과의 연관성)

  • Jun, Kyong-Hwa;Won, Yong-Sung;Shin, Eun-Young;Cho, Hyun-Min;Im, Myoung-Goo;Chin, Hyung-Min;Park, Woo-Bae
    • Journal of Gastric Cancer
    • /
    • v.6 no.4
    • /
    • pp.227-236
    • /
    • 2006
  • Purpose: Methylation of gene regulatory elements plays an important role in gene inactivation without genetic alteration. Gastric cancer is one of the tumors that exhibit a high frequency of CpG island hypermethylation. The purpose of this study was to investigate the occurrence of CpG island hypermethylation in gastric carcinoma in relation to H. pylori infection, CIMP and clincopathologic variables. Materials and Methods: We investigated the promoter methylation Status of six genes (hMLH1, p16, p14, COX-2, MGMT, E-cadherin) and CIMP in 36 gastric carcinoma tissues as well as in nontumor tissues. CIMP status was investigated by examining the methylation status of MINT 1, 2, 12, 25 and 31. The methylation status of the promoter was examined by methylation-specific PCR (MSP) and H. pylori infection was examined by histological diagnosis after staining with Warthin-Starry silver. Results: Among the 36 gastric carcinoma tissues, DNA hypermethylation was detected in the following frequencies: 14 (38.9%) for p14, 13 (36.1%) for p16, 8 (22.2%) for MGMT, 10 (27.8%) for COX-2, 21 (58.3%) for E-cadherin, and 6 (16.7%) for hMLH1. The frequencies for MINT1 and MINT25 hypermethylation were significantly higher in tumor tissues than in nontumor tissues. 16 (44.4%) of the 36 gastric carcinoma tissues were positive for the CIMP CIMP-H tumors were associated with older patients and larger tumor size than CIMP-L tumors. We found a significant association between the presence of the CIMP and hypermethylation of p16. Hypermethylation of p16 and MINT2 were significantly different when compared by age. MINT1 gene methylation was significantly associated with H. pylori infection (P=0.004). Conclusion: Our results suggest that aberrant hypermethylation of multiple tumor related genes (hMLH1, p16, p14, COX-2, MGMT, E-cadherin, MINT1, 2, 12, 25, 31) occurs frequently in gastric carcinoma tissues. The hypermethylation of MINT1 was significantly higher in the tumor tissues and was associated with H. pylori infection.

  • PDF

Exploring the DNA methylome of Korean patients with colorectal cancer consolidates the clinical implications of cancer-associated methylation markers

  • Sejoon Lee;Kil-yong Lee;Ji-Hwan Park;Duck-Woo Kim;Heung-Kwon Oh;Seong-Taek Oh;Jongbum Jeon;Dongyoon Lee;Soobok Joe;Hoang Bao Khanh Chu;Jisun Kang;Jin-Young Lee;Sheehyun Cho;Hyeran Shim;Si-Cho Kim;Hong Seok Lee;Young-Joon Kim;Jin Ok Yang;Jaeim Lee;Sung-Bum Kang
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.161-166
    • /
    • 2024
  • Aberrant DNA methylation plays a critical role in the development and progression of colorectal cancer (CRC), which has high incidence and mortality rates in Korea. Various CRC-associated methylation markers for cancer diagnosis and prognosis have been developed; however, they have not been validated for Korean patients owing to the lack of comprehensive clinical and methylome data. Here, we obtained reliable methylation profiles for 228 tumor, 103 adjacent normal, and two unmatched normal colon tissues from Korean patients with CRC using an Illumina Infinium EPIC array; the data were corrected for biological and experiment biases. A comparative methylome analysis confirmed the previous findings that hypermethylated positions in the tumor were highly enriched in CpG island and promoter, 5' untranslated, and first exon regions. However, hypomethylated positions were enriched in the open-sea regions considerably distant from CpG islands. After applying a CpG island methylator phenotype (CIMP) to the methylome data of tumor samples to stratify the CRC patients, we consolidated the previously established clinicopathological findings that the tumors with high CIMP signatures were significantly enriched in the right colon. The results showed a higher prevalence of microsatellite instability status and MLH1 methylation in tumors with high CMP signatures than in those with low or non-CIMP signatures. Therefore, our methylome analysis and dataset provide insights into applying CRC-associated methylation markers for Korean patients regarding cancer diagnosis and prognosis.

Hypoxia Inducible Factor-1α Directly Regulates Nuclear Clusterin Transcription by Interacting with Hypoxia Response Elements in the Clusterin Promoter

  • Park, Jeongsook;Park, So Yun;Shin, Eunkyung;Lee, Sun Hee;Kim, Yoon Sook;Lee, Dong Hoon;Roh, Gu Seob;Kim, Hyun Joon;Kang, Sang Soo;Cho, Gyeong Jae;Jeong, Bo-Young;Kim, Hwajin;Choi, Wan Sung
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.178-186
    • /
    • 2014
  • Differential transcription of the clusterin (CLU) gene yields two CLU isoforms, a nuclear form (nCLU) and a secretory form (sCLU), which play crucial roles in prostate tumorigenesis. Pro-apoptotic nCLU and anti-apoptotic sCLU have opposite effects and are differentially expressed in normal and cancer cells; however, their regulatory mechanisms at the transcriptional level are not yet known. Here, we examined the transcriptional regulation of nCLU in response to hypoxia. We identified three putative hypoxia response elements (HREs) in the human CLU promoter between positions -806 and +51 bp. Using a luciferase reporter, electrophoretic gel mobility shift, and chromatin immunoprecipitation assays, we further showed that hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) bound directly to these sites and activated transcription. Exposure to the hypoxia-mimetic compound $CoCl_2$, incubation under 1% $O_2$ conditions, or overexpression of HIF-$1{\alpha}$ enhanced nCLU expression and induced apoptosis in human prostate cancer PC3M cells. However, LNCaP prostate cancer cells were resistant to hypoxia-induced cell death. Methylation-specific PCR analysis revealed that the CLU promoter in PC3M cells was not methylated; in contrast, the CLU promoter in LNCap cells was methylated. Co-treatment of LNCaP cells with $CoCl_2$ and a demethylating agent promoted apoptotic cell death through the induction of nCLU. We conclude that nCLU expression is regulated by direct binding of HIF-$1{\alpha}$ to HRE sites and is epigenetically controlled by methylation of its promoter region.

Hepatitis C Virus Core Protein Activates p53 to Inhibit E6-associated Protein Expression via Promoter Hypermethylation (C형 간염바이러스 코어 단백질에 의한 p53 활성화와 프로모터 과메틸화를 통한 E6AP 발현 억제)

  • Kwak, Juri;Jang, Kyung Lib
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1007-1015
    • /
    • 2018
  • The E6-associated protein (E6AP) is known to induce the ubiquitination and proteasomal degradation of HCV core protein and thereby directly impair capsid assembly, resulting in a decline in HCV replication. To counteract this anti-viral host defense system, HCV core protein has evolved a strategy to inhibit E6AP expression via DNA methylation. In the present study, we further explored the mechanism by which HCV core protein inhibits E6AP expression. HCV core protein upregulated both the protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b to inhibit E6AP expression via promoter hypermethylation in HepG2 cells but not in Hep3B cells, which do not express p53. Interestingly, p53 overexpression alone in Hep3B cells was sufficient to activate DNMTs in the absence of HCV core protein and thereby inhibit E6AP expression via promoter hypermethylation. In addition, upregulation of p53 was absolutely required for the HCV core protein to inhibit E6AP expression via promoter hypermethylation, as evidenced by both p53 knockdown and ectopic expression experiments. Accordingly, levels of the ubiquitinated forms of HCV core protein were lower in HepG2 cells than in Hep3B cells. Based on these observations, we conclude that HCV core protein evades ubiquitin-dependent proteasomal degradation in a p53-dependent manner.