• Title/Summary/Keyword: Promoter Methylation

Search Result 198, Processing Time 0.048 seconds

The first review study on association of DNA methylation with gastric cancer in Iranian population

  • Shahbazi, Mahsa;Yari, Kheirollah;Rezania, Niloufar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2499-2506
    • /
    • 2016
  • Background: Gastric cancer (GC) is the second leading cause of cancer-related death worldwide. Several environmental, genetic and epigenetic factors have been suggested to have a role in GC development. Epigenetic mechanisms like histone changes and promoter hyper-methylation are now being increasingly studied. Associations between methylation of many gene promoters with the risk of gastric cancer have been investigated worldwide. Such aberrant methylation may result in silencing of specific genes related to cell cycling, cell adhesion, apoptosis and DNA repair. Thus this molecular mechanism might have a key role in proliferation and migration of cancerous cells. Materials and Methods: In this review article we included studies conducted on DNA methylation and gastric cancer in Iranian populations. Using Science direct, Pubmed/PMC, Springer, Wiley online library and SciELO databases, all published data until 31 January 2016 were gathered. We also searched Science direct data base for similar investigations around the world to make a comparison between Iran and other countries. Results: By searching these databases, we found that the association between methylation of seven gene promoters and gastric cancer had been studied in Iran until 31 January 2016. These genes were p16, hLMH1, E-cadherin, CTLA4, $THR{\beta}$, mir9 and APC. Searching in science direct database also showed that 92 articles had been published around the world till January 2016. Our investigation revealed that despite the importance of GC and its high prevalence in Iran, the methylation status of only a few gene promoters has been studied so far. More studies with higher sample numbers are needed to reveal the relation of methylation status of gene promoters to gastric cancer in Iran. Conclusions: Further studies will be helpful in identifying associations of DNA methylation in candidate genes with gastric cancer risk in Iranian populations.

Identification of DNA Methylation Markers for NSCLC Using Hpall-Mspl Methylation Microarray (Hpall-Mspl Methylation Microarray를 이용한 비소세포폐암의 DNA Methylation Marker 발굴)

  • Kwon, Mi Hye;Lee, Go Eun;Kwon, Sun Jung;Choi, Eugene;Na, Moon Jun;Cho, Hyun Min;Kim, Young Jin;Sul, Hye Jung;Cho, Young Jun;Son, Ji Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.495-503
    • /
    • 2008
  • Background: Epigenetic alterations in certain genes are now known as at least important as genetic mutation in pathogenesis of cancer. Especially abnormal hypermethylation in or near promoter region of tumor suppressor genes (TSGs) are known to result in gene silencing and loss of gene function eventually. The authors tried to search for new lung cancer-specific TSGs which have CpG islands and HpaII sites, and are thought to be involved in carcinogenesis by epigenetic mechanism. Methods: Tumor tissue and corresponding adjacent normal tissue were obtained from 10 patients who diagnosed with non small cell lung cancer (NSCLC) and underwent surgery in Konyang university hospital in 2005. Methylation profiles of promoter region of 21 genes in tumor tissue & non-tumor tissue were examined with HpaII-MspI methylation microarray (Methyl-Scan DNA chip$^{(R)}$, Genomic tree, Inc, South Korea). The rates of hypermethylation were compared in tumor and non-tumor group, and as a normal control, we obtained lung tissue from two young patients with pneumothorax during bullectomies, methylation profiles were examined in the same way. Results: Among the 21 genes, 10 genes were commonly methylated in tumor, non-tumor, and control group. The 6 genes of APC, AR, RAR-b, HTR1B, EPHA3, and CFTR, among the rest of 11 genes were not methylated in control, and more frequently hypermethylated in tumor tissue than non-tumor tissue. Conclusion: In the present study, HTR1B, EPHA3, and CFTR are suggested as possible novel TSGs of NSCLC by epigenetic mechanism.

Promoter demethylation mediates the expression of ZNF645, a novel cancer/testis gene

  • Bai, Gang;Liu, Yunqiang;Zhang, Hao;Su, Dan;Tao, Dachang;Yang, Yuan;Ma, Yongxin;Zhang, Sizhong
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.400-406
    • /
    • 2010
  • Cancer/testis (CT) antigens exhibit highly tissue-restricted expression and are considered promising targets for cancer vaccines. Here we identified a novel CT gene ZNF645 which restrictively expresses in normal human testes and lung cancer patients (68.3%). To investigate the promoter methylation status of ZNF645, we carried out bisulfite genomic sequencing and found that the CpG island in its promoter was heavily methylated in normal lung tissues without the expression of ZNF645, whereas there was high demethylation in normal human testes and lung carcinoma tissues with its expression. Also ZNF645 could be remarkably activated in A549 and HEK293T cells treated by DNA demethylation agent 5'-aza-2'-deoxycytidine. And the dual luciferase assay revealed that the promoter activity of the ZNF645 was inhibited by methylation of the CpG island region. Therefore, we proposed that ZNF645 is a CT gene and activated in human testis and lung cancers by demethylation of its promoter region.

TAp73 and ΔNp73 Have Opposing Roles in 5-aza-2'-Deoxycytidine-Induced Apoptosis in Breast Cancer Cells

  • Lai, Jing;Yang, Fang;Zhang, Wenwen;Wang, Yanru;Xu, Jing;Song, Wei;Huang, Guichun;Gu, Jun;Guan, Xiaoxiang
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.605-612
    • /
    • 2014
  • The p73 gene contains an extrinsic P1 promoter and an intrinsic P2 promoter, controlling the transcription of the pro-apoptotic TAp73 isoform and the anti-apoptotic ${\Delta}Np73$ isoform, respectively. The DNA methylation status of both promoters act equally in the epigenetic transcriptional regulation of their relevant isoforms. The aim of this study was to analyze the different effects of these p73 isoforms in 5-aza-2'-deoxycytidine (5-aza-dC)-induced apoptosis in breast cancer cells. We investigated the effects of the DNA demethylation agent, 5-aza-dC, on the T-47D breast cancer cell line, and evaluated the methylation status of the p73 promoters and expression of TAp73 and ${\Delta}Np73$. Furthermore, we assessed the expression of p53 and p73 isoforms in 5-aza-dC-treated T-47D cells and p53 knockout cells. 5-aza-dC induced significant anti-tumor effects in T-47D cells, including inhibition of cell viability, G1 phase arrest and apoptosis. This was associated with p73 promoter demethylation and a concomitant increase in TAp73 mRNA and protein expression. In contrast, the methylation status of promoter P2 was not associated with ${\Delta}Np73$ mRNA or protein levels. Furthermore, demethylation of P2 failed to inhibit the expression of ${\Delta}Np73$ with 5-aza-dC in the p53 knockdown cell model. Our study suggests that demethylation of the P1 and P2 promoters has opposite effects on the expression of p73 isoforms, namely up-regulation of TAp73 and down-regulation of ${\Delta}Np73$. We also demonstrate that p53 likely contributes to 5-aza-dC-induced ${\Delta}Np73$ transcriptional inactivation in breast cancer cells.

Intragenic DNA Methylation Concomitant with Repression of ATP4B and ATP4A Gene Expression in Gastric Cancer is a Potential Serum Biomarker

  • Raja, Uthandaraman Mahalinga;Gopal, Gopisetty;Rajkumar, Thangarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5563-5568
    • /
    • 2012
  • Based on our previous report on gastric cancer which documented ATP4A and ATP4B mRNA down-regulation in gastric tumors relative to normal gastric tissues, we hypothesized that epigenetic mechanisms could be responsible. ATP4A and ATP4B mRNA expression in gastric cancer cell lines AGS, SNU638 and NUGC-3 was examined using reverse transcriptase PCR (RT-PCR). AGS cells were treated with TSA or 5'-AzaDC and methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis were performed. MSP analysis was on DNA from paraffin embedded tissues sections and plasma. Expression analysis revealed downregulation of ATP4A and ATP4B genes in gastric cancer cell lines relative to normal gastric tissue, while treatment with 5'-AzaDC re-activated expression of both. Search for CpG islands in their putative promoter regions did not indicate CpG islands (CGI) but only further downstream in the bodies of the genes. Methylation specific PCR (MSP) in the exon1 of the ATP4B gene and exon7 in ATP4A indicated methylation in all the gastric cancer cell lines tested. MSP analysis in tumor tissue samples revealed methylation in the majority of tumor samples, 15/19, for ATP4B and 8/8 for ATP4A. There was concordance between ATP4B and ATP4A down-regulation and methylation status in the tumour samples tested. ATP4B methylation was detectable in cell free DNA from gastric cancer patient's plasma samples. Thus ATP4A and ATP4B down-regulation involves DNA methylation and methylated ATP4B DNA in plasma is a potential biomarker for gastric cancer.

Epithelial-Specific SHP1-P2 Methylation - a Novel Universal Tumor Marker for Detection of Colorectal Cancer Lymph Node Metastasis

  • Rattanatanyong, Prakasit;Keelawat, Somboon;Kitkumthorn, Nakarin;Mutirangura, Apiwat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4117-4123
    • /
    • 2016
  • Background: Methylation of promoter 2 of the SHP1 gene is epithelial cell specific, with reported potential as a lymph node metastatic marker. Objective: To demonstrate SHP1-P2 methylation-specific quantitative PCR effectiveness in detecting colorectal cancer (CRC) DNA in lymph nodes. Materials and Methods: SHP1-P2 methylation levels were measured in lymph nodes of CRC patients and compared with pathological findings and patient prognosis. Results: Lymph nodes of CRC metastatic patients without microscopically detectable cancer cells had higher SHP1-P2 methylation levels than lymph nodes of controls (p<0.001). In addition, a higher SHP1-P2 methylation level was associated with a shorter duration until adverse disease events, metastasis, recurrence and death (r2 = 0.236 and p value = 0.048). Studying two cohorts of 74 CRC patients without microscopic lymph node metastases showed that only the cohort containing samples with high SHP1-P2 methylation levels had a significant hazard ratio of 3.8 (95%CI = 1.02 to 14.2). Conclusions: SHP1-P2 methylation PCR can detect CRC DNA in lymph nodes even if cancer cells are not visible under a microscope, confirming applicability as a potential universal lymph node metastatic marker.

Loss of Expression of Cyclin D2 by Aberrant DNA Methylation: a Potential Biomarker in Vietnamese Breast Cancer Patients

  • Truong, Phuong Kim;Lao, Thuan Duc;Doan, Thao Phuong Thi;Huyen Le, Thuy Ai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2209-2213
    • /
    • 2015
  • DNA methylation of tumor suppressor gene promoters is the most frequent phenomenon leading to inactivation of function, consequently driving malignant cell transformation. Cyclin D2 is implicated in tumor suppression. In our study, we carried out the MSP assay to evaluation the methylation status at CpG islands in the cyclin D2 promoter in breast cancer cases from the Vietnamese population. The results showed that the frequency of methylation reached 62.1% (59 of 95 breast cancer tumors), but was low in non-cancer specimens at 10% (2 of 20 non-cancer specimens). Additionally, with an RR (relative risk) and OR (odd ratios) of 6.21 and 14.8, DNA hypermethylation of cyclin D2 increased the possibility of malignant transformation. Our results confirmed the cyclin D2 hypermethylation could be used as the potential biomarker which could be applied in prognosis and early diagnosis of Vietnamese breast cancer patients.

Overexpression of Hypermethylated Homeobox A11 (HOXA11) Inhibits Tumor Cell Growth and Induces Apoptosis in Cervical Cancer

  • Seung-Yul Lee;Tae Jeong Oh;Sungwhan An;Seung-Hoon Lee
    • Development and Reproduction
    • /
    • v.28 no.2
    • /
    • pp.37-45
    • /
    • 2024
  • This study aimed to elucidate the potential of Homeobox A11 (HOXA11) as a therapeutic target and a diagnostic methylation marker for cervical cancer. Gene expression analysis using cDNA microarray in cervical cancer cell lines revealed significantly reduced expression of the HOXA11 gene. Subsequent investigation of HOXA11 promoter methylation in samples from normal individuals and invasive cervical cancer patients showed over 53.2% higher methylation in cancer scrapes compared to normal scrapes. Furthermore, overexpression of HOXA11, which is downregulated in cervical cancer, strongly suppressed cell growth in cervical cancer cell lines, HeLa and HT3. Additionally, we performed transferase dUTP nick end labeling assay and confirmed that the inhibition of cervical cancer cell proliferation occurred via apoptosis. Mechanistically, overexpression of HOXA11 led to mitochondrial apoptosis characterized by PARP cleavage due to increased c-Myc and enhanced cytochrome C secretion into the cytoplasm. These findings suggest that HOXA11 could potentially serve as a methylation marker for diagnosing cervical cancer and as a novel therapeutic target for its treatment.

Deciphering the DNA methylation landscape of colorectal cancer in a Korean cohort

  • Seok-Byung Lim;Soobok Joe;Hyo-Ju Kim;Jong Lyul Lee;In Ja Park;Yong Sik Yoon;Chan Wook Kim;Jong-Hwan Kim;Sangok Kim;Jin-Young Lee;Hyeran Shim;Hoang Bao Khanh Chu;Sheehyun Cho;Jisun Kang;Si-Cho Kim;Hong Seok Lee;Young-Joon Kim;Seon-Young Kim;Chang Sik Yu
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.569-574
    • /
    • 2023
  • Aberrant DNA methylation plays a pivotal role in the onset and progression of colorectal cancer (CRC), a disease with high incidence and mortality rates in Korea. Several CRC-associated diagnostic and prognostic methylation markers have been identified; however, due to a lack of comprehensive clinical and methylome data, these markers have not been validated in the Korean population. Therefore, in this study, we aimed to obtain the CRC methylation profile using 172 tumors and 128 adjacent normal colon tissues of Korean patients with CRC. Based on the comparative methylome analysis, we found that hypermethylated positions in the tumor were predominantly concentrated in CpG islands and promoter regions, whereas hypomethylated positions were largely found in the open-sea region, notably distant from the CpG islands. In addition, we stratified patients by applying the CpG island methylator phenotype (CIMP) to the tumor methylome data. This stratification validated previous clinicopathological implications, as tumors with high CIMP signatures were significantly correlated with the proximal colon, higher prevalence of microsatellite instability status, and MLH1 promoter methylation. In conclusion, our extensive methylome analysis and the accompanying dataset offers valuable insights into the utilization of CRC-associated methylation markers in Korean patients, potentially improving CRC diagnosis and prognosis. Furthermore, this study serves as a solid foundation for further investigations into personalized and ethnicity-specific CRC treatments.

The Relationship DNA Methylation of $p16^{INK4a}$ and Colorectal Cancer

  • Hong, Young-Seoub;You, Chang-Hun;Roh, Mee-Sook;Kim, Na-Young;Lee, Kyung-Eun;Kim, Hyo-Jun;Lee, Hyun-Jae;Kwak, Jong-Young;Kim, Joon-Youn
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.320-325
    • /
    • 2007
  • Promoter hypermethylation of the $p16^{INK4a}$ gene was investigated in 52 sets of samples of tumor tissue and adjacent normal tissue from Korean patients with colorectal cancer, using the proposed modified the Real-time PCR/SYBR Green detection method presented in this study. In normal tissue, 29 of 52 patients (56%) were methylated and in tumor tissue, 23 of 52 patients (44%) were methylated. The 34 cases (65.4%) showed a concordant DNA methylation pattern in both normal tissue and tumor tissue. Analyzing the association between the clinicopathologic features and DNA methylation status of the $p16^{INK4a}$ gene, the DNA methylation status according to by Duke's stage was different while other clinicopathological characteristics, including the age, sex, tumor stage, and histologic type of the patient were not found to be correlated with $p16^{INK4a}$ methylation. With multivariate logistic regression, it was observed that the DNA methylation status of $p16^{INK4a}$ gene in normal tissue was correlated with the DNA methylation status of the $p16^{INK4a}$ gene in tumor tissue (P=0.026). According to a Kaplan-Meier survival analysis, a difference in the survival rate by DNA methylation status was found, but it was not significant.