Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0154

TAp73 and ΔNp73 Have Opposing Roles in 5-aza-2'-Deoxycytidine-Induced Apoptosis in Breast Cancer Cells  

Lai, Jing (Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University)
Yang, Fang (Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University)
Zhang, Wenwen (Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University)
Wang, Yanru (Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University)
Xu, Jing (Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University)
Song, Wei (Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University)
Huang, Guichun (Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University)
Gu, Jun (Department of General Surgery, Jinling Hospital, Medical School of Nanjing University)
Guan, Xiaoxiang (Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University)
Abstract
The p73 gene contains an extrinsic P1 promoter and an intrinsic P2 promoter, controlling the transcription of the pro-apoptotic TAp73 isoform and the anti-apoptotic ${\Delta}Np73$ isoform, respectively. The DNA methylation status of both promoters act equally in the epigenetic transcriptional regulation of their relevant isoforms. The aim of this study was to analyze the different effects of these p73 isoforms in 5-aza-2'-deoxycytidine (5-aza-dC)-induced apoptosis in breast cancer cells. We investigated the effects of the DNA demethylation agent, 5-aza-dC, on the T-47D breast cancer cell line, and evaluated the methylation status of the p73 promoters and expression of TAp73 and ${\Delta}Np73$. Furthermore, we assessed the expression of p53 and p73 isoforms in 5-aza-dC-treated T-47D cells and p53 knockout cells. 5-aza-dC induced significant anti-tumor effects in T-47D cells, including inhibition of cell viability, G1 phase arrest and apoptosis. This was associated with p73 promoter demethylation and a concomitant increase in TAp73 mRNA and protein expression. In contrast, the methylation status of promoter P2 was not associated with ${\Delta}Np73$ mRNA or protein levels. Furthermore, demethylation of P2 failed to inhibit the expression of ${\Delta}Np73$ with 5-aza-dC in the p53 knockdown cell model. Our study suggests that demethylation of the P1 and P2 promoters has opposite effects on the expression of p73 isoforms, namely up-regulation of TAp73 and down-regulation of ${\Delta}Np73$. We also demonstrate that p53 likely contributes to 5-aza-dC-induced ${\Delta}Np73$ transcriptional inactivation in breast cancer cells.
Keywords
5-aza-2'-deoxycytidine; breast cancer; methylation; p53; p73;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ushiku, T., Chong, J.M., Uozaki, H., Hino, R., Chang, M.S., Sudo, M., Rani, B.R., Sakuma, K., Nagai, H., and Fukayama, M. (2007). p73 gene promoter methylation in Epstein-Barr virus-associated gastric carcinoma. Int. J. Cancer 120, 60-66.   DOI   ScienceOn
2 Willis, A.C., Pipes, T., Zhu, J., and Chen, X. (2003). p73 can suppress the proliferation of cells that express mutant p53. Oncogene 22, 5481-5495.   DOI   ScienceOn
3 Rossi, M., Sayan, A.E., Terrinoni, A., Melino, G., and Knight, R.A. (2004). Mechanism of induction of apoptosis by p73 and its relevance to neuroblastoma biology. Ann. N Y Acad. Sci. 1028, 143-149.   DOI   ScienceOn
4 Sahu, G.R., and Das, B.R. (2005). Alteration of p73 in pediatric de novo acute lymphoblastic leukemia. Biochem. Biophys. Res. Commun. 327, 750-755.   DOI   ScienceOn
5 Sato, H., Oka, T., Shinnou, Y., Kondo, T., Washio, K., Takano, M., Takata, K., Morito, T., Huang, X., Tamura, M., et al. (2010). Multistep aberrant CpG island hyper-methylation is associated with the progression of adult T-cell leukemia/lymphoma. Am. J. Pathol. 176, 402-415.   DOI   ScienceOn
6 Schmelz, K., Wagner, M., Dorken, B., and Tamm, I. (2005). 5-Aza-2'-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int. J. Cancer 114, 683-695.   DOI   ScienceOn
7 Stiewe, T., Zimmermann, S., Frilling, A., Esche, H., and Putzer, B.M. (2002). Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Res. 62, 3598-3602.
8 Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C.C., Khan, F., Itie-Youten, A., Wakeham, A., Tsao, M.S., et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 22, 2677-2691.   DOI   ScienceOn
9 Tosi, G.M., Trimarchi, C., Macaluso, M., La Sala, D., Ciccodicola, A., Lazzi, S., Massaro-Giordano, M., Caporossi, A., Giordano, A., and Cinti, C. (2005). Genetic and epigenetic alterations of RB2/p130 tumor suppressor gene in human sporadic retinoblastoma: implications for pathogenesis and therapeutic approach. Oncogene 24, 5827-5836.   DOI   ScienceOn
10 Tophkhane, C., Yang, S.H., Jiang, Y., Ma, Z., Subramaniam, D., Anant, S., Yogosawa, S., Sakai, T., Liu, W.G., Edgerton, S., et al. (2012). p53 inactivation upregulates p73 expression through E2F-1 mediated transcription. PLoS One 7, e43564.   DOI
11 Melino, G., De Laurenzi, V., and Vousden, K.H. (2002). p73: Friend or foe in tumorigenesis. Nat. Rev. Cancer 2, 605-615.   DOI   ScienceOn
12 Moll, U.M., and Slade, N. (2004). p63 and p73: roles in development and tumor formation. Mol. Cancer Res. 2, 371-386.
13 Murray-Zmijewski, F., Lane, D.P., and Bourdon, J.C. (2006). p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13, 962-972.   DOI   ScienceOn
14 Nakagawa, T., Takahashi, M., Ozaki, T., Watanabe Ki, K., Todo, S., Mizuguchi, H., Hayakawa, T., and Nakagawara, A. (2002). Autoinhibitory regulation of p73 by Delta Np73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter. Mol. Cell. Biol. 22, 2575-2585.   DOI   ScienceOn
15 Nakagawa, T., Takahashi, M., Ozaki, T., Watanabe, K., Hayashi, S., Hosoda, M., Todo, S., and Nakagawara, A. (2003). Negative autoregulation of p73 and p53 by DeltaNp73 in regulating differentiation and survival of human neuroblastoma cells. Cancer Lett. 197, 105-109.   DOI   ScienceOn
16 Robertson, K.D. (2005). DNA methylation and human disease. Nat. Rev. Genet. 6, 597-610.
17 Ozaki, T., and Nakagawara, A. (2005). p73, a sophisticated p53 family member in the cancer world. Cancer Sci. 96, 729-737.   DOI   ScienceOn
18 Pozniak, C.D., Radinovic, S., Yang, A., McKeon, F., Kaplan, D.R., and Miller, F.D. (2000). An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289, 304-306.   DOI   ScienceOn
19 Ramadan, S., Terrinoni, A., Catani, M.V., Sayan, A.E., Knight, R.A., Mueller, M., Krammer, P.H., Melino, G., and Candi, E. (2005). p73 induces apoptosis by different mechanisms. Biochem. Biophys. Res. Commun. 331, 713-717.   DOI   ScienceOn
20 Han, L.L., Hou, L., Zhou, M.J., Ma, Z.L., Lin, D.L., Wu, L., and Ge, Y.L. (2013). Aberrant NDRG1 methylation associated with its decreased expression and clinicopathological significance in breast cancer. J. Biomed. Sci. 20, 52.   DOI   ScienceOn
21 Hassler, M.R., Klisaroska, A., Kollmann, K., Steiner, I., Bilban, M., Schiefer, A.-I., Sexl, V., and Egger, G. (2012). Antineoplastic activity of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine in anaplastic large cell lymphoma. Biochimie 94, 2297-2307.   DOI   ScienceOn
22 Hatzimichael, E., Benetatos, L., Dasoula, A., Dranitsaris, G., Tsiara, S., Georgiou, I., Syrrou, M., Stebbing, J., Coley, H.M., Crook, T., et al. (2009). Absence of methylation-dependent transcriptional silencing in TP73 irrespective of the methylation status of the CDKN2A CpG island in plasma cell neoplasia. Leuk. Res. 33, 1272-1275.   DOI   ScienceOn
23 Holliday, R., and Pugh, J.E. (1975). DNA modification mechanisms and gene activity during development. Science 187, 226-232.   DOI   ScienceOn
24 Jones, P.A., and Baylin, S.B. (2002). The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415-428.
25 Ikawa, S., Nakagawara, A., and Ikawa, Y. (1999). p53 family genes: structural comparison, expression and mutation. Cell Death Differ. 6, 1154-1161.   DOI   ScienceOn
26 Ishimoto, O., Kawahara, C., Enjo, K., Obinata, M., Nukiwa, T., and Ikawa, S. (2002). Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res. 62, 636-641.
27 Jha, A.K., Nikbakht, M., Jain, V., Sehgal, A., Capalash, N., and Kaur, J. (2012). Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population. Mol. Biol. Rep. 39, 9145-9157.   DOI
28 Kartasheva, N.N., Contente, A., Lenz-Stoppler, C., Roth, J., and Dobbelstein, M. (2002). p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene 21, 4715-4727.   DOI   ScienceOn
29 Daskalos, A., Nikolaidis, G., Xinarianos, G., Savvari, P., Cassidy, A., Zakopoulou, R., Kotsinas, A., Gorgoulis, V., Field, J.K., and Liloglou, T. (2009). Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int. J. Cancer 124, 81-87.   DOI   ScienceOn
30 Gonzalez-Gomez, P., Bello, M.J., Alonso, M.E., Aminoso, C., Lopez-Marin, I., De Campos, J.M., Isla, A., Gutierrez, M., and Rey, J.A. (2004). Promoter methylation status of multiple genes in brain metastases of solid tumors. Int. J. Mol. Med. 13, 93-98.
31 Gonzalez-Cano, L., Hillje, A.L., Fuertes-Alvarez, S., Marques, M.M., Blanch, A., Ian, R.W., Irwin, M.S., Schwamborn, J.C., and Marin, M.C. (2013). Regulatory feedback loop between TP73 and TRIM32. Cell Death Dis. 4, e704.   DOI
32 Gore, S.D. (2005). Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies. Nat. Clin. Pract. Oncol. 2 Suppl 1, S30-35.   DOI   ScienceOn
33 Griffiths, E.A., Gore, S.D., Hooker, C.M., Mohammad, H.P., McDevitt, M.A., Smith, B.D., Karp, J.E., Herman, J.G., and Carraway, H.E. (2010). Epigenetic differences in cytogenetically normal versus abnormal acute myeloid leukemia. Epigenetics 5, 590-600.   DOI
34 Grob, T.J., Novak, U., Maisse, C., Barcaroli, D., Luthi, A.U., Pirnia, F., Hugli, B., Graber, H.U., De Laurenzi, V., Fey, M.F., et al. (2001). Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ. 8, 1213-1223.   DOI
35 Daskalos, A., Logotheti, S., Markopoulou, S., Xinarianos, G., Gosney, J.R., Kastania, A.N., Zoumpourlis, V., Field, J.K., and Liloglou, T. (2011). Global DNA hypomethylation-induced DeltaNp73 transcriptional activation in non-small cell lung cancer. Cancer Lett. 300, 79-86.   DOI   ScienceOn
36 Yu, J., Baron, V., Mercola, D., Mustelin, T., and Adamson, E.D. (2007). A network of p73, p53 and Egr1 is required for efficient apoptosis in tumor cells. Cell Death Differ. 14, 436-446.   DOI   ScienceOn
37 Kong, W.J., Zhang, S., Guo, C., Wang, Y., and Zhang, D. (2005). Methylation-associated silencing of death-associated protein kinase gene in laryngeal squamous cell cancer. Laryngoscope 115, 1395-1401.   DOI   ScienceOn
38 Schubeler, D., Lorincz, M.C., Cimbora, D.M., Telling, A., Feng, Y.Q., Bouhassira, E.E., and Groudine, M. (2000). Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol. Cell. Biol. 20, 9103-9112.   DOI   ScienceOn