• Title/Summary/Keyword: Promising Technology Forecast

Search Result 13, Processing Time 0.025 seconds

A Study on Forecast of the Promising Fusion Technology by US Patent Analysis (특허분석을 통한 유망융합기술의 예측)

  • Gang, Hui-Jong;Eom, Mi-Jeong;Kim, Dong-Myeong
    • Journal of Technology Innovation
    • /
    • v.14 no.3
    • /
    • pp.93-116
    • /
    • 2006
  • This study provides a quantitative forecasting method to identify promising fusion technology and it also applies the method based on patent analysis to IT. This study defines fusion technology, promising technology, fusion index, promising index and promising fusion technology. From the analysis, this study found that the next generation computer network is the most promising in IT area. This result is consistent with the forecasts made by the interviews and discussion of experts.

  • PDF

Discovering Promising Convergence Technologies Using Network Analysis of Maturity and Dependency of Technology (기술 성숙도 및 의존도의 네트워크 분석을 통한 유망 융합 기술 발굴 방법론)

  • Choi, Hochang;Kwahk, Kee-Young;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.101-124
    • /
    • 2018
  • Recently, most of the technologies have been developed in various forms through the advancement of single technology or interaction with other technologies. Particularly, these technologies have the characteristic of the convergence caused by the interaction between two or more techniques. In addition, efforts in responding to technological changes by advance are continuously increasing through forecasting promising convergence technologies that will emerge in the near future. According to this phenomenon, many researchers are attempting to perform various analyses about forecasting promising convergence technologies. A convergence technology has characteristics of various technologies according to the principle of generation. Therefore, forecasting promising convergence technologies is much more difficult than forecasting general technologies with high growth potential. Nevertheless, some achievements have been confirmed in an attempt to forecasting promising technologies using big data analysis and social network analysis. Studies of convergence technology through data analysis are actively conducted with the theme of discovering new convergence technologies and analyzing their trends. According that, information about new convergence technologies is being provided more abundantly than in the past. However, existing methods in analyzing convergence technology have some limitations. Firstly, most studies deal with convergence technology analyze data through predefined technology classifications. The technologies appearing recently tend to have characteristics of convergence and thus consist of technologies from various fields. In other words, the new convergence technologies may not belong to the defined classification. Therefore, the existing method does not properly reflect the dynamic change of the convergence phenomenon. Secondly, in order to forecast the promising convergence technologies, most of the existing analysis method use the general purpose indicators in process. This method does not fully utilize the specificity of convergence phenomenon. The new convergence technology is highly dependent on the existing technology, which is the origin of that technology. Based on that, it can grow into the independent field or disappear rapidly, according to the change of the dependent technology. In the existing analysis, the potential growth of convergence technology is judged through the traditional indicators designed from the general purpose. However, these indicators do not reflect the principle of convergence. In other words, these indicators do not reflect the characteristics of convergence technology, which brings the meaning of new technologies emerge through two or more mature technologies and grown technologies affect the creation of another technology. Thirdly, previous studies do not provide objective methods for evaluating the accuracy of models in forecasting promising convergence technologies. In the studies of convergence technology, the subject of forecasting promising technologies was relatively insufficient due to the complexity of the field. Therefore, it is difficult to find a method to evaluate the accuracy of the model that forecasting promising convergence technologies. In order to activate the field of forecasting promising convergence technology, it is important to establish a method for objectively verifying and evaluating the accuracy of the model proposed by each study. To overcome these limitations, we propose a new method for analysis of convergence technologies. First of all, through topic modeling, we derive a new technology classification in terms of text content. It reflects the dynamic change of the actual technology market, not the existing fixed classification standard. In addition, we identify the influence relationships between technologies through the topic correspondence weights of each document, and structuralize them into a network. In addition, we devise a centrality indicator (PGC, potential growth centrality) to forecast the future growth of technology by utilizing the centrality information of each technology. It reflects the convergence characteristics of each technology, according to technology maturity and interdependence between technologies. Along with this, we propose a method to evaluate the accuracy of forecasting model by measuring the growth rate of promising technology. It is based on the variation of potential growth centrality by period. In this paper, we conduct experiments with 13,477 patent documents dealing with technical contents to evaluate the performance and practical applicability of the proposed method. As a result, it is confirmed that the forecast model based on a centrality indicator of the proposed method has a maximum forecast accuracy of about 2.88 times higher than the accuracy of the forecast model based on the currently used network indicators.

Electric Vehicle Technology Trends Forecast Research Using the Paper and Patent Data (논문 및 특허 데이터를 활용한 전기자동차 기술 동향 예측 연구)

  • Gu, Ja-Wook;Lee, Jong-Ho;Chung, Myoung-Sug;Lee, Joo-yeoun
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.165-172
    • /
    • 2017
  • In this paper, we analyze the research / technology trends of electric vehicles from 2001 to 2014, through keyword analysis using paper data published in SCIE or SSCI Journal on electric vehicles, time series analysis using patent data by IPC, and network analysis using nodeXL. also we predicted promising technologies of electric vehicles using one of the prediction methods, weighted moving average method. As a result of this study, battery technology among the electric vehicle component technologies appeared as a promising technology.

Application of MODIS Satellite Observation Data for Air Quality Forecast (MODIS 인공위성 관측 자료를 이용한 대기질 예측 응용)

  • Lee, Kwon-Ho;Lee, Dong-Ha;Kim, Young-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.851-862
    • /
    • 2006
  • Satellites have been valuable tool for global/regional scale atmospheric environment monitoring as well as emission source detection. In this study, we present the results of application of satellite remote sensing data for air quality forecast in Seoul metropolitan area. AOT (Aerosol Optical Thickness) data from TERRA/MODIS (Moderate Resolution Imaging Spectre-radiometer) satellite were compared to ground based $PM_{10}$ mass concentrations, and used to estimate the possibility of the aerosol forecasting in Seoul metropolitan area. Although correlation coefficient (${\sim}0.37$) between MODIS AOT products and surface $PM_{10}$ concentration data was relatively low, there was good correlation between MODIS AOT and surface PM concentration under certain atmospheric conditions, which supports the feasibility of using the high-resolution MODIS AOT for air quality forecasting. The MODIS AOT data with trajectory forecasts also can provide information on aerosol concentration trend. The success rate of the 24 hour aerosol concentration trend forecast result was about 75% in this study. Finally, application of satellite remote sensing data with ground-based air quality observations could provide promising results for air quality monitoring and more exact trend forecast methodology by high resolution satellite data and verification with long term measurement dataset.

Technology Development Strategy of Piggyback Transportation System Using Topic Modeling Based on LDA Algorithm

  • Jun, Sung-Chan;Han, Seong-Ho;Kim, Sang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.261-270
    • /
    • 2020
  • In this study, we identify promising technologies for Piggyback transportation system by analyzing the relevant patent information. In order for this, we first develop the patent database by extracting relevant technology keywords from the pioneering research papers for the Piggyback flactcar system. We then employed textmining to identify the frequently referred words from the patent database, and using these words, we applied the LDA (Latent Dirichlet Allocation) algorithm in order to identify "topics" that are corresponding to "key" technologies for the Piggyback system. Finally, we employ the ARIMA model to forecast the trends of these "key" technologies for technology forecasting, and identify the promising technologies for the Piggyback system. with keyword search method the patent analysis. The results show that data-driven integrated management system, operation planning system and special cargo (especially fluid and gas) handling/storage technologies are identified to be the "key" promising technolgies for the future of the Piggyback system, and data reception/analysis techniques must be developed in order to improve the system performance. The proposed procedure and analysis method provides useful insights to develop the R&D strategy and the technology roadmap for the Piggyback system.

A Study on the Finding of Promising Export Items in Defense industry for Export Market Expansion-Focusing on Text Mining Analysis-

  • Yeo, Seoyoon;Jeong, Jong Hee;Kim, Seong Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.235-243
    • /
    • 2022
  • This paper aims to find promising export items for market expansion of defense export items. Germany, the UK, and France were selected as export target countries to obtain unstructured forecast data on weapons system acquisition plans for the next ten years by each country. Using the TF-IDF in text mining analysis, keywords that appeared frequently in data from three countries were derived. As a result of this paper, keywords for each country's major acquisition projects drawing. However, most of the derived keywords were related to mainstay weapon systems produced by domestic defense companies in each country. To discover promising export items from text mining, we proposed that the drawn keywords are distinguished as similar weapon systems. In addition, we assort the weapon systems that the three countries will get a plan to acquire commonly. As a result of this paper, it can be seen that the current promising export item is a weapon system related to the information system. Prioritizing overseas demands using key words can set clear market entry goals. In the case of domestic companies based on needs, it is possible to establish a specific entry strategy. Relevant organizations also can provide customized marketing support.

The Analysis of Patent Trends and Radiation Convergence Technology (방사선 융합기술과 특허 동향 분석)

  • Park, Jang-Hoon;Ock, Young Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.785-790
    • /
    • 2019
  • Convergence and advancement between technologies such as Artificial Intelligence, Big Data, and the Internet of Things have a significant impact on the regional flagship industry. All technical fields are used as a converged technology by connecting between technology and industry. In order to understanding the recent technical trend, it is possible to easily realized the technical trend research and analysis through keyword search using patent information. The purpose of this study is to identify patent trends applied to convergence technology in the 4th Industrial Revolution age in radiation technology development and to present patent trends and analysis for strengthening and utilizing radiation-related industrial technology competitiveness and to apply them to demand technology and forecast future promising technologies.

Detection of Emerging Technology by Using Highly Cited Papers (고피인용 논문을 활용한 유망기술 발굴)

  • Lee, June-Young;Kim, Do-Hyun;Ahn, Se-Jung;Noh, Kyung-Ran;Kwon, Oh-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1655-1664
    • /
    • 2013
  • Recently, it becomes essential to forecast the future and identify emerging technologies in order to improve R&D efficiency and gain a competitive advantage under rapidly changing environment of science and technology. Therefore this research aims to identify the future and emerging technologies especially for the industry and applied it to list top ten emerging technologies. In this study, we identify research fronts across all areas of science and technology through verifying and comparing the 2008 and the 2012 surge in research activities. Finally we detect rapidly increasing 10 promising technology areas. This research results are expected to provide valuable information to support stragegic and policy decision making.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

ICT-oriented Training of Future HEI Teachers: a Forecast of Educational Trends 2022-2024

  • Olena, Politova;Dariia, Pustovoichenko;Hrechanyk, Nataliia;Kateryna, Yaroshchuk;Serhii, Nenko
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.387-393
    • /
    • 2022
  • The article reflects short-term perspectives on the use of information and communication technologies in the training of teachers for higher education. Education is characterized by conservatism, so aspects of systematic development of the industry are relevant to this cluster of social activity. Therefore, forecasting the introduction of innovative elements of ICT training is in demand for the educational environment. Forecasting educational trends are most relevant exactly in the issues of training future teachers of higher education because these specialists are actually the first to implement the acquired professional skills in pedagogical activities. The article aims to consider the existing potential of ICT-based learning, its implementation in the coming years, and promising innovative educational elements that may become relevant for the educational space in the future. The tasks of scientific exploration are to show the optimal formats of synergy between traditional and innovative models of learning. Based on already existing experience, extrapolation of conditions of educational process organization with modeling realities of using information and communication technologies in various learning dimensions should be carried out. Educational trends for the next 3 years are a rather tentative forecast because, as demonstrated by the events associated with the COVID-19 pandemic, the socio-cultural space is very changeable. Consequently, the dynamism of the educational environment dictates the need for a value-based awareness of the information society and the practical use of technological advances. Thus, information and communication technologies are a manifestation of innovative educational strategies of today and become an important component along with traditional aspects of educational process organization. Future higher education teachers should develop a training strategy taking into account the expediency of the ICT component.