• 제목/요약/키워드: Proline content$K^+/Na^+$

검색결과 85건 처리시간 0.02초

Effect of NaCl Stress on Inorganic Ion, L-Proline, Sugar and Starch Content of Soybean Seedlings

  • Cho, Jin-Woong;Kim, Choong-Soo;Jung D. So
    • 한국작물학회지
    • /
    • 제47권2호
    • /
    • pp.75-79
    • /
    • 2002
  • This study conducted to elucidate the change of the cation content (Na$^{+}$, $K^{+}$, and $Ca^{2+}$), the L-proline content, and the sugar and starch content in the stems, roots, and leaves of three cultivars of the 30 days old seedling soybeans (Glycine max L. cv. Danwonkong, Hwang-keumkong, and Kwangankong) after 100 mM NaCl stress containing 1/2 Hoaglands nutrient solution in the sand culture. The reduction of the dry matter weight after 100 mM NaCl treatment among cultivars was higher in the order of Kwangankong, Danwonkong, and Hwang-keumkong. The highest reduction of the dry matter weight was occurred at the roots among three parts of plant. The Na$^{+}$ content increased with NaCl treatment in overall and specially greatly increased in roots and stems. The $K^{+}$ and $Ca^{2+}$ content decreased with NaCl treatment at the roots and stems. The $K^{+}$ content, however, at the leaves increased in all three cultivars with the NaCl treatment. The L-proline content with NaCl stress increased greatly. The increment of the L-proline content at the stems and roots of Hwangkeumkong was lower than that of other two cultivars, K wangankong and Danwonkong. The sugar content decreased with NaCl treatment at the stems and leaves. The starch content also decreased at the stems and leaves with NaCl treatment.aCl treatment.

Proline Accumulation in Vigna angularis Seedlings Under Salt Stress

  • Lee, Hee-Kyung;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권1호
    • /
    • pp.51-57
    • /
    • 2000
  • Changes in the proline accumulation of ten-day-old seedlings of Vigna angularis in response to NaCl treatment were monitored. The proline content increased gradually both with an increase in the exposure time to salt stress and in a concentration-dependent manner. The increased proline accumulation was stronger in the shoots than in the roots. The salt stress by itself resulted in a significant inhibition of the chlorophyll content. Pre-treatment with proline before salinization lasting 48 h did not significantly affect the endogenous proline level in the roots, in contrast, a considerable increase of proline was observed in the shoots. The application of exogenous proline to the seedlings increased the endogenous proline content and improved the root and shoot growth under saline conditions. Detached leaves also exhibited an increased proline level in response to the applied NaCl, however, at a lower magnitude than in the intact seedlings. The proline alleviated the inhibitory effect of the NaCl in a concentration-dependent manner, thereby suggesting that salinity is a strong inducer of proline accumulation. In addition, abscisic acid eliminated the inhibitory effect of the salt salinity, thereby indicating a protective role on salinity stress and a regulatory role in proline synthesis. Accordingly, it would appear that proline may be involved in salt tolerance.

  • PDF

염스트레스가 담배식물의 광합성, proline 및 이온함량에 미치는 영향 (Effects of Salt Stress on Photosynthesis, Free Proline Content and Ion Content in Tobacco.)

  • 이상각;신주식;석영선;배길관
    • 한국환경농학회지
    • /
    • 제17권3호
    • /
    • pp.215-219
    • /
    • 1998
  • 본 실험은 담배의 염스트레스에 대한 생장특성 및 생리적반응을 구명하기 위하여 NaCl을 농도별로 처리하여 시험한 결과를 요약하면 다음과 같다. NaCl농도가 높아질수록 생장은 크게 억제되었으며, 90mM의 지상부/지하부율이 약 2.0이하에서 생육형질이 크게 감소하여 생리적인 제한농도로 나타났다. 광합성량, 증산량 및 수분이용효율은 NaCl농도가 높아질수록 감소하였으며, 광합성량은 60mM에서 대조구의 50%의 감소로 염해에 민감하게 반응하였으며, 증산량과 수분이용효율은 처리농도간에 큰 차이는 없었다. 잎수분포텐셀은 염농도의 증가에 따라 낮아졌으며 30mM에서 대조구의 2배로 낮아졌으며 처리농도간에는 120mM에서 크게 감소하였다. Proline함량은 NaCl농도가 높아짐에 따라 120mM가지는 일정하게 증가하다가 150mM에서 감소하였다. NaCl농도에 따라 $Ca^{2+}$, $Mg^{2+}$, $K^+$의 함량은 90mM까지는 증가하였고, 120mM이상에서는 감소하였다. $K^+$은 염농도의 증가에 따라 완만히 증가하다가 150mM이상에서 급격히 증가하였다. $Cl^-$은 염농도의 증가에 따라 30mM의 일시적 증가외는 처리간의 차이는 없이 감소하는 경향이었다. $K^+/Na^+$율은 염농도가 높아질수록 감소하였으며 90mM의 1.0이하에서 세포내의 항상성이 유지되는 농도로 나타났다. $K^+$$Na^+$함량과는 부의 상관을, $K^+/Na^+$율과 단백질함량과는 정의 상관을 나타냈다.

  • PDF

Change in Photosynthesis, Proline Content, and Osmotic Potential of Corn Seedling under High-Saline Condition

  • Yoon Byeong Sung;Jin Chengwn;Park Sang Un;Cho Dong Ha
    • 한국작물학회지
    • /
    • 제50권1호
    • /
    • pp.28-31
    • /
    • 2005
  • To identify salt-tolerance characteristics of corn seedling was treated in solution of 0, 50 and 100 mM NaCl of hydroponic cultivation. In photosynthesis of corn seedling, there was no large difference between 50mM and 0 mM NaCl solution, however, in 100 mM NaCl solution, the tolerance gradually decreased to $76\%,\;49\%,\;and\;31\%$ after one day, four days, and seven days, respectively, in comparison to 0 mM NaCl solution. Osmotic potential of corn in seedling period was significantly decreased with increasing saline level, however, free proline content in the plant on the ground was significantly increased with increasing saline level and with the lapse of time. In terms of correlation among major characteristics, there was a highly significant positive difference between osmotic pressure potential and photosynthesis, However, highly negative correlation was found between osmotic pressure potential and free proline content. In addition, it was expected that young seedling of corn with saline tolerance may be utilized in the transplantation in salt-accumulated land. Based on above-shown result, in terms of saline tolerance of Chalok-2 variety, growth suppression was serious with 100mM NaCl solution. However, growth was expected that seedling growth would be favorable under 50 mM NaCl solution.

Proline Accumulation and P5CS ($\Delta^1$-pyrroline-5-carboxylate synthetase) Gene Expression in Response to Salt Stress in Zoysiagrasses

  • Lee, Dong-Joon;Hwang, Cheol-Ho
    • 한국작물학회지
    • /
    • 제48권1호
    • /
    • pp.20-24
    • /
    • 2003
  • Proline is known as an osmotrotectant to enhance tolerance against both salt and dehydration stresses. A P5CS ($\Delta^1$-pyrroline-5-carboxylate synthetase) plays a major role in regulation of synthesis of proline. An overexpression of the mothbean P5CS gene in transgenic tobacco plant increased the levels of proline and osmotolerance. In an attempt to look for the possibility to use content of proline as well as a level of P5CS gene expression as molecular markers for salt tolerance, the amounts of proline and transcript levels of P5CS were measured as functions of either concentration of NaCl or length of treatment period among different species of zoysiagrass. Hybridzoysia showed the highest level of proline ($329\mu\textrm{g}$/g.f.w.) among five different species of zoysiagrass at 250 mM NaCl in 24 hours. The level of P5CS transcript was also the highest in the hybridzoysia at 250 mM NaCl in 24 hours. The transcriptions of P5CS gene were induced at the rates of 1.2, 1.2, 1.8, and 1.8, upon treatment of 250 mM NaCl in Z. japonica, Z. matrella, Z. sinica and hybridzoysia respectively. Based on a correlation between the level of P5CS transcript and the proline content among different species of zoysiagrass, a comparative structural analysis of the gene for P5CS from either Z. sinica or hybridzoysia may lead to an understanding of mechanism for salt tolerance shown differently among zoysiagrasses.

Salt Tolerance of Vigna angularis during Germination and Early Seedling Growth

  • Lee, Hee-Kyung;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권1호
    • /
    • pp.59-69
    • /
    • 2000
  • The present study was undertaken in investigate the response to salinity and effect of plant growth regulators and proline under salinity stress on the germination and seedling growth of Vigna angularis. The protective effect of external Ca2+ on root elongation under saline conditions was also investigated. The seed germination of Vigna angularis decreased with an increase in salinity. The growth regulators GA3 was more effective than kinetin. At a higher salinity, low concentrations of kinetin and high concentrations of GA3 were more effective. The external application of proline and betaine improved germination under saline conditions. At a low salinity proline and betaine alleviated the salinity-induced inhibition of germination, yet at higher NaCl concentrations, proline and betaine were both ineffective. Exposure to salinity during germination was accompanied by an increase in the proline content, thereby suggesting that one compatible solute in the germinating seed would seem to be proline. The inhibition of germination by high NaCl concentrations was relatively more severe in scarified seeds than in intact seeds, indicating that the seed coat acts as a partial barrier to an Na2+ ameliorated the adverse effect of salinity stress.

  • PDF

NaCl처리에 대한 벼 원형질체 생존율과 캘러스내 양이온 함량의 품종간 차이 (Varietal Difference of Survival Rate of Protoplast and Ion Content of Callus Treated with NaCl in Rice)

  • 이영만;정창남;장미순;신서호
    • 식물조직배양학회지
    • /
    • 제28권1호
    • /
    • pp.15-20
    • /
    • 2001
  • NaCl에 대한 내성이 다른 CI5309, 동진벼, 낙동벼의 원형질체와 캘러스에 NaCl 0, 0.3, 0.6, 0.9%를 처리하여 원형질체의 생존율과 캘러스의 proline 및 이온 함량을 조사하였다. 원형질체에 NaCl을 처리하였을 때 NaCl 농도가 증가함에 따라 품종간에 생존율의 차이가 컸다. 유묘검정에서 내성이 높은 CI5309와 동진벼는 차이가 거의 없으나 낙동벼는 이들보다 생존율이 현격하게 낮았으며 그 정도는 처리시간이 길어질수록 더 커졌다. 캘러스 내의 proline함량은 NaCl 농도 증가에 따라 내성인 CI5309와 동진벼는 변화가 거의 없었으나 감수성인 낙동벼는 현격하게 적었으며 0.9%의 높은 농도에서 CI5309, 동진벼, 낙동벼의 순으로 함량이 많았고 이 순서는 유묘의 내성정도와 일치하였다. NaCl 농도 증가에 따라 캘러스 내의 Ca는 세 품종 다 감소하나 그 정도는 크지 않았으며 K도 감소하나 0.9%에서 세 품종이 같았다. Mg도 농도증가에 따라 세 품종 모두 감소하였으나 동진벼가 가장 낮았고, Na는 무처리에 비하여 월등히 많았으나 세 품종 다 농도에 따른 차이는 거의 없었으며 그 양은 CI5309, 나동벼, 동진벼 순이었다.

  • PDF

Exogenous proline mitigates the detrimental effects of saline and alkaline stresses in Leymus chinensis (Trin.)

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.529-538
    • /
    • 2010
  • Proline accumulates in plants under environmental stresses including saline stress and alkaline stress. Here, we investigated the responses to two different stresses, saline stress (200 mM NaCl) and alkaline stress (100 mM $Na_2CO_3$) in two Leymus chinensis (Trin.) genotypes, LcWT07 and LcJS0107, and effects of exogenous proline on the activities of antioxidant enzymes. Both saline stress and alkaline stress significantly induced the accumulation of proline in leaves of the two genotypes after 96 h, and alkaline stress caused a transient and significant increase in LcJS0107 plants at 6 h. A reduction in the activities of catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11), but not in the activity of superoxide dismutase (SOD, EC 1.15.1.1), was detected in plants exposed to saline and alkaline stresses. Remarkable decrease in relative water contents (RWC) was found in 144 h stressed plants. However, lipid peroxidation estimated by malonyldialdehyde (MDA) content in leaves remained relatively stable. With the addition of exogenous proline, it did not cause changes of proline levels in two genotypes, but combined with saline or alkaline stress, the exogenous application of proline significantly induced proline accumulation after even short treatment periods. Combined with salt stress, the exogenous application also increased the activities of CAT and APX. These results indicated that exogenous proline not only increases proline levels in vivo as a osmotic adjustment under stress, but mitigates the detrimental effects of saline and alkaline stresses by increasing the activities of antioxidant enzymes.

염생식물 나문재의 염농도에 따른 생장 및 생리적 특성 (Growth and Physiological Characteristics in a Halophyte Suaeda glauca under Different NaCl Concentrations)

  • 김지영;성필모;이덕배;정남진
    • 한국작물학회지
    • /
    • 제64권1호
    • /
    • pp.48-54
    • /
    • 2019
  • 본 연구는 염 농도 별 나문재의 생장과 식물체 내의 무기 이온과 아미노산 함량, 광합성 효율 등을 조사하여 염농도에 따른 나문재의 생리적 특성을 구명하고자 실시하였다. 나문재의 초장, 분지수, 건물중을 조사하였을 때, 50 mM에서 최적의 생육 상태를 보였고 50~100 mM의 염농도 범위에서 생육이 양호하였다. 식물체 내 무기이온의 함량은 염농도가 높을수록 Na 이온의 함량은 증가하였고, K, Ca, Mg 이온의 함량은 감소하였다. 식물체 부위별 무기이온의 함량은 Na 이온의 함량은 지하부보다 지상부에서 더 높게 나타났다. 염농도에 따른 식물체의 유리아미노산 함량을 보면, proline을 제외한 glycine 등의 16종의 아미노산은 공통적으로 생육에 최적 염농도인 50 mM에서 함량이 가장 낮게 나타났으며, proline은 정반대로 50 mM에서 현저히 높은 함량을 보였다. 염농도에 따른 광합성 효율은 50 mM에서 가장 높았으나 400 mM의 높은 염농도에서도 광합성효율의 저하는 크지 않았다. 결론적으로, 나문재의 생육에 최적 염농도는 50 mM이었지만, 염농도 변화에 따른 식물체 내의 무기이온, proline 등의 아미노산 함량의 변화, 그리고 고염조건에서도 광합성 효율을 유지할 수 있는 생리적 특성으로 0~400 mM의 넓은 범위의 염농도에서도 생육이 가능하여, 염농도의 변이가 큰 신간척지에 적합한 염생식물로 판단된다.