• Title/Summary/Keyword: Proliferation inhibition

Search Result 1,135, Processing Time 0.031 seconds

Growth Inhibition and G2/M Phase Cell Cycle Arrest by 3,4,5-Trimethoxy-4'-bromo-cis-stilbene in Human Colon Cancer Cells

  • Heo, Yeon-Hoi;Min, Hye-Young;Kim, Sang-Hee;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2007
  • Resveratrol (3,5,4’-trihydroxy-trans-stilbene), a naturally occurring phytoallexin abundant in grapes and several plants, has been shown to be active in inhibiting proliferation and inducing apoptosis in several human cancer cell lines. On the line of the biological activity of resveratrol, a variety of resveratrol analogs were synthesized and evaluated for their growth inhibitory effects against several human cancer cell lines. In the present study, we found that one of the resveratrol analogs, 3,4,5-trimethoxy-4’-bromo-cis-stilbene, markedly suppressed human colon cancer cell proliferation (EC$_{50}$ = 0.01 ${\mu}$g/ml), and the inhibitory activity was superior to its corresponding trans-isomer (EC$_{50}$ = 1.6 ${\mu}$g/ml) and resveratrol (EC$_{50}$ = 18.7 ${\mu}$g/ml). Prompted by the strong growth inhibitory activity in cultured human colon cancer cells (Col2), we investigated its mechanism of action. 3,4,5-Trimethoxy-4’-bromo-cis-stilbene induced arrest of cell cycle progression at G2/M phase and increased at sub-G1 phase DNA contents of the cell cycle in a time- and dose-dependent manner. Colony formation was also inhibited in a dose-dependent manner, indicating the inhibitory activity of the compound on cell proliferation. Moreover, the morphological changes and condensation of the cellular DNA by the treatment of the compound were well correlated with the induction of apoptosis. These data suggest the potential of 3,4,5-trimethoxy-4’-bromo-cis-stilbene might serve as a cancer chemotherapeutic or chemopreventive agent by virtue of arresting the cell cycle and inducing apoptosis for the human colon cancer cells.

Yak-kong and Soybean Induced Expression of Osteoprotegerin in MG-63 Human Osteoblastic Cells Requires Estrogen Receptor-$\beta$

  • Kim, Jin-Young;Cho, Yun-Hi
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.159-168
    • /
    • 2005
  • Phytoestrogens, especially Yak-kong or soybean-derived isoflavones have been traditionally used as a supplement of estrogen for preventing postmemopausal osteoporosis in oriental folk medicine. In our previous study, the treatment of Yak-kong and soybean increased estrogen receptor-a (ERa) expression and proliferation of MG-63 osteoblastic cells. In contrast, the increase of estrogen receptor-$\beta$ (ER$\beta$) expression in proliferating MG-63 cells with Yak-kong and soybean treatment was less pronounced, which suggested that ER$\beta$ may play a role rather in the regulation of bone cell differentiation To determine the role of ER$\beta$ in Yak-kong or soybean mediated regulation of bone cell differentiation, we established MG-63 cell lines stably expressing either ER$\beta$ or antisense ER$\beta$ RNAs. Increased expression of ER$\beta$ did not affect ERa expression and proliferation of MG-63 cells. However, increased expression of ER$\beta$ in MG-63 cells (ER$\beta$-MG63 cells) selectively enhanced Yak-kong or soybean induced expression of osteoprotegerin (OPG), a novel soluble glycoprotein which is secreted from osteoblasts and mediates the signal for osteoclast differentiation. Inhibition of ER$\beta$ expression by antisense ER$\beta$ RNAs (As-ER$\beta$-MG63) caused these cells to insensitize Yak-kong or soybean induced expression of OPG but increased MG-63 cell proliferation. Furthermore, the comparable effects between Yak-kong and the combined treatment of genistein and daidzein at $0.5{\times}l0^{-8}$ M, which is a concentration of these two isoflavones similar to Yak-kong at 0.001 mg/mL, on OPG expression in ER$\beta$-MG63 cell demonstrate that the enhanced expression of OPG with Yak-kong treatment is mediated by the synergistic effect of low leveled isoflavones in the extracts. Together, coupled with low level of ER expression in osteoclasts, our data demonstrate that ER$\beta$ in osteoblasts plays an important role in Yak-kong and soybean mediated inhibition of osteoclast differentiation indirectly by enhancing the expression of OPG.

The Effect of Blueberry Extract on Gene Expressions Related to Apoptosis in Human Breast Cancer MCF7 Cells (블루베리가 인체 유방암세포 MCF7에서 세포 사멸 관련 유전자 발현에 미치는 영향)

  • Lee, Se-Na;Kang, Keum-Jee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.1
    • /
    • pp.30-36
    • /
    • 2010
  • This study was conducted to investigate the effects of blueberry extract on cell death, ROS and gene expression patterns associated with the anti-cancer activity in human breast cancer MCF7 cells. To accomplish this, 20 mg/mL concentration of blueberry extract was added to the cell culture for 0, 6, 12, 24 or 48 h, after which the effects were evaluated by various analyses. MTT assay showed that the cellular activities decreased rapidly during the first 12 h of treatment. During this period, dual staining with Hoechst33322 and propidium iodide also produced a similar trend in which the dead or dying cells increased sharply. Furthermore, evaluation of BrdU incorporation as an index for cell proliferation revealed a marked decrease during the first 12 h of treatment, suggesting that anticancer activity involves the inhibition of cell proliferation and induces cell death. ROS also increased according to the duration of the treatment, indicating intracellular accumulation is associated with the cell death. RT-PCR analysis revealed significant decreases in anti-apoptotic (Bax) and increases in pro-apoptotic gene expressions (Bci-2, caspase- 3, and 9) (p<0.05). Taken these together, blueberry extract induces ROS accumulation in MCF7 cells, causing inhibition of cell proliferation and eventually leading to cell death. This cell death was associated with apoptotic gene expression in blueberry-treated cells for up to 24 h.

Cell Cycle Arrest by Sabaek-san is Associated with induction of Cdk Inhibitor p21 in Human Lung Cancer A549 Cells (사백산에 의한 인체 폐암세포의 G1기 성장억제기전에 관한 연구)

  • Kang Byong Ryeung;Oh Chang Sun;Lee Jae Hun;Choi Yung Hyun;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1177-1183
    • /
    • 2002
  • We investigated the effects of Sabaek-san (SBS) water extract on the cell proliferation of human lung carcinoma A549 cells. SBS treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. This anti-proliferative effect of A549 cells by SBS treatment was associated with morphological changes such as membrane shrinking and cell rounding up. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by SBS treatment in a concentration-dependent manner. SBS treatment induced a marked accumulation of tumor suppressor p53 and a concomitant induction of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP, which appears to be transcriptionally upregulated and is p53 dependent. In addition, SBS treatment resulted in down-regulation of cyclooxygenase-2 (COX-2) as determined by RT-PCR analysis. The present results indicated that SBS-induced inhibition of lung cancer cell proliferation is associated with the blockage of G1/S progression the induction of apoptosis.

Separation and Purification of Effective Components from the Alisma orientale and its Application as a Cosmeceutical Ingredient (택사추출물의 성분분리와 화장품 원료로서의 특성)

  • Lee, Dae-Woo;Kim, Young-Jin;Kim, Young-Sil;Kim, Jong-Heon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.23-28
    • /
    • 2006
  • In this study, we performed anti-oxidation, whitening, cell recovery and anti-inflammation effects with Alisma orientale to evaluate the cosmeceutical properties. Alisma orientate extract (30, 70, 100 % MeOH) exhibited a significant tree radical scavenging effect against 1,1-diphenyl-2-picryl hydrazine (DPPH) radical generation and showed tyrosinase inhibition effect in a dose dependent manner (over 0.5% concentration). In cell proliferation assay using human fibroblast, it didn't show any proliferation effect but showed safety from cytotoxicity under 0.05% concentration. For whitening assay, we evaluated the melanin synthesis rate using B16 melanocyte and it showed a significant inhibitory effect (up to 40% under 0.05% concentration). After major screening assay, we separate 3 fractions from Alisma orientate extract by MPLC and performed cell recovery assay, melanin synthesis inhibition assay and anti-inflammatory assay. The third fraction showed a cell recovery effect over 30% against radical damage and remarkable repression in melanin synthesis and COX-2 synthesis.

The Effect of Ephedrae Herba Pharmacopuncture on Adipocyte Metabolism (마황약침(麻黃藥鍼)이 지방세포 대사에 미치는 영향)

  • Jeong, Jong-Jin;Kim, Byoung-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • Objectives : This study was carried out to investigate the effects of Ephedrae Herba pharmacopuncture (EHP) on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibition of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of EHP ranging from 0.01 to 1.0 $mg/m{\ell}$. The effect of EHP on adipogenesis was examined by measuring glycerol-3-phosphate dehydrogenase (GPDH) activity and by oil red O staining. Mature adipocytes from rat epididymal fat pad were incubated with EHP ranging from 0.01 to 1.0 $mg/m{\ell}$ for 3 days. The effect of EHP on lipolysis was examined by measuring free glycerol released. Fat tissue from porcine skin was injected with EHP ranging from 0.1 to 10.0 $mg/m{\ell}$ to examine the effect of EHP on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. Proliferation of preadipocytes was significantly inhibited by EHP at the concentration of 1.0 $mg/m{\ell}$. Lipolysis of adipocytes was increased by EHP at the concentration of 0.1, 1.0 $mg/m{\ell}$. Porcine fat tissues were widely injured by EHP at the concentration of 10.0 $mg/m{\ell}$. Conclusions : From the above results, EHP efficiently induces inhibition of preadipocytes proliferation, lipolysis of adipocytes and histologic injury in fat tissues. Therefore, EHP may be useful to treat localized obesity.

  • PDF

Anticancer Effects of Vitamin D3 Analog on Human Leukemic Cell Line(U937) and Role of Vitamin $D_3$ Analog on Immune Function of Human Peripheral Blood Lymphocytes (Human 백혈병 세포에 대한 비타민 $D_3$ 유도체의 항암효과 및 Human 임파구의 면역기능에 대한 비타민 $D_3$ 유도체의 역할)

  • 정수자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 1998
  • This study describes the effects of 1,25-dihydroxyvitamin D3[1,25(OH)2D3, calcitriol] analog, 1,25(OH)2-16ene-23yne-D3 on proliferatin and differentiatin of the human histiocytic lymphoma cell line U937. This paper also describes the effects of 1,25(OH)2-16ene-23yne-D3 on ${\gamma}$-interferon(IFN-${\gamma}$) synthesis by phytohemagglutinin-activated peripheral blood lymphocytes(PBLs). In the present investigation, 1,25(OH2)-16ene-23yne-D3 was compared to the natural metablite of vitamin D3, 1,25(OH)2D3. 1,25(OH)2-16ene-23yne-D3 was more potent than 1,25(OH)2D3 for inhibition of proliferation and induction of differentiation of U937 cells, Its effects on inhibition of proliferation was about 30-fold more potent than 1,25(OH)2D3. On induction of differentiation as measured by nonspecific esterase (NSE) activity and morphologic change, this analog morphologically and functionally differentiated U937 cells to monocyte-macrophage phenotype showing a decrease of N/C ration in Giemsa staining and the increase of adherence ability of surface. After 3 days in culture, a more significant supression of IFN-${\gamma}$ synthesis analog on supression of IFN-${\gamma}$ synthesis was a dose-dependent manner, with peak activity at 10-7M. The strong direct effects of 1,25(OH)2-16ene-23yne-D3 on cell proliferation and cell differentiation, make this compound an interesting candidate for clinical studies for several types of malignancies, and the effects on supression of IFN-${\gamma}$ synthesis provide the further evidence for a role of 1,25(OH)2-16ene-23yne-D3 in immunoregulation.

  • PDF

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.

Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition

  • Ritto, Dakanda;Tanasawet, Supita;Singkhorn, Sawana;Klaypradit, Wanwimol;Hutamekalin, Pilaiwanwadee;Tipmanee, Varomyalin;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • v.11 no.4
    • /
    • pp.275-280
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Re-epithelialization has an important role in skin wound healing. Astaxanthin (ASX), a carotenoid found in crustaceans including shrimp, crab, and salmon, has been widely used for skin protection. Therefore, we investigated the effects of ASX on proliferation and migration of human skin keratinocyte cells and explored the mechanism associated with that migration. MATERIAL/METHOD: HaCaT keratinocyte cells were exposed to $0.25-1{\mu}g/mL$ of ASX. Proliferation of keratinocytes was analyzed by using MTT assays and flow cytometry. Keratinocyte migration was determined by using a scratch wound-healing assay. A mechanism for regulation of migration was explored via immunocytochemistry and western blot analysis. RESULTS: Our results suggest that ASX produces no significant toxicity in human keratinocyte cells. Cell-cycle analysis on ASX-treated keratinocytes demonstrated a significant increase in keratinocyte cell proliferation at the S phase. In addition, ASX increased keratinocyte motility across the wound space in a time-dependent manner. The mechanism by which ASX increased keratinocyte migration was associated with induction of filopodia and formation of lamellipodia, as well as with increased Cdc42 and Rac1 activation and decreased RhoA activation. CONCLUSIONS: ASX stimulates the migration of keratinocytes through Cdc42, Rac1 activation and RhoA inhibition. ASX has a positive role in the re-epithelialization of wounds. Our results may encourage further in vivo and clinical study into the development of ASX as a potential agent for wound repair.

Antiproliferative properties of luteolin against chemically induced colon cancer in mice fed on a high-fat diet and colorectal cancer cells grown in adipocyte-derived medium

  • Park, Jeongeun;Kim, Eunjung
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.47-58
    • /
    • 2022
  • Purpose: Obesity and a high-fat diet (HFD) are risk factors for colorectal cancer. We have previously shown that luteolin (LUT) supplementation in HFD-fed mice markedly inhibits tumor development in chemically induced colon carcinogenesis. In this study, we evaluated the anticancer effect of LUT in the inhibition of cell proliferation in HFD-fed obese mice and HT-29 human colorectal adenocarcinoma cells grown in an adipocyte-derived medium. Methods: C57BL/6 mice were fed a normal diet (ND, 11.69% fat out of total calories consumed, n = 10), HFD (40% fat out of total calories consumed, n = 10), HFD with 0.0025% LUT (n = 10), and HFD with 0.005% LUT (n = 10) and were subjected to azoxymethane-dextran sulfate sodium chemical colon carcinogenesis. All mice were fed the experimental diet for 11 weeks. 3T3-L1 preadipocytes and HT-29 cells were treated with various doses of LUT in an adipocyte-conditioned medium (Ad-CM). Results: The weekly body weight changes in the LUT groups were similar to those in the HFD group; however, the survival rates of the LUT group were higher than those of the HFD group. Impaired crypt integrity of the colonic mucosa in the HFD group was observed to be restored in the LUT group. The colonic expression of proliferating cell nuclear antigen and insulin-like growth factor 1 (IGF-1) receptors were suppressed by the LUT supplementation in the HFD-fed mice. The LUT treatment (10, 20, and 40 µM) inhibited the proliferation and migration of HT-29 cells cultured in Ad-CM in a dose-dependent manner, as well as the differentiation of 3T3-L1 preadipocytes. Conclusion: These results suggest that the anticancer effect of LUT is probably due to the inhibition of IGF-1 signaling and adipogenesis-related cell proliferation in colon cancer cells.