• Title/Summary/Keyword: Projection stereolithography

Search Result 16, Processing Time 0.04 seconds

Accuracy Improvement of Output in Projection Stereolithography by Optimizing Projection Resolution (전사방식 광조형 시스템의 해상도 최적화를 통한 출력물의 정밀도 향상)

  • Kim, Yeong-Heum;Kim, Kyu-Eon;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.710-717
    • /
    • 2015
  • Projection stereolithography is an additive manufacturing method that uses beam projection to cure the photo-reactive resin used. The light source of a cross-section layer-form illuminates photo-curable resin for building a three-dimensional (3D) model. This method has high accuracy and a fast molding speed because the processing unit is a face instead of a dot. This study describes a Scalable Projection Stereolithography 3D Printing System for improving the accuracy of the stereolithography. In a conventional projection 3D printer, when printing a small sized model, many pixels are not used in the projection or curing. The proposed system solves this problem through an optical adjustment, and keeps using the original image as possible as filling the whole projection area. The experimental verification shows that the proposed system can maintain the highest level of precision regardless of the output size.

Curing Characteristics for Projection Stereolithography based on LCD and Visible LED (LCD 와 가시광선 LED 기반의 광조형 시스템을 위한 수지의 경화 특성)

  • Kim, Ga Young;Ha, Young Myoung;Park, In Baek;Kim, Min Sub;Jo, Kwang Ho;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.878-884
    • /
    • 2013
  • Stereolithography can be classified into two main categories according to the cross-sectional shape: scanning type and projection type. Projection stereolithography has significant advantages when making a layer using a single patterned beam, and results in improved speed and accuracy. To implement relatively low-cost projection stereolithography, we developed a system using a commercially available resin, which cures on exposure to visible light. The optimum photoinitiator was investigated, as well as the mixing ratio. The viscosity, shrinkage, curing depth and tensile strength were evaluated through several experiments on fabricated three-dimensional structures, and thus an optimal resin selection system was developed.

Reducing Separation Force for Projection Stereolithography based on Constrained Surface Technique (규제액면기법의 전사방식 광조형 시스템을 위한 이형력 감소)

  • Kim, Hye Jung;Ha, Young Myoung;Park, In Baek;Kim, Min Sub;Jo, Kwang Ho;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.1001-1006
    • /
    • 2013
  • Projection-based stereolithography is divided into constrained-surface and free-surface type according to controlling liquid layer. The constrained-surface type has a uniform layer thickness due to the use of a projection window, which covers the pattern generator such as liquid crystal display. However, the adhered resin on the projection window causes trouble and requires great separation force when the cured layer is separated from the window. To minimize the separation force, we developed a system to measure the separation force. The influence of material covering the pattern generator and the resin temperature is investigated in the system. Several structures according to the resin temperature and the velocity of z-axis elevation are compared. As a result, the fabrication condition to minimize the separation force reduces the process time.

Development of Stereolithography Apparatus by using UV-LED (UV-LED를 이용한 광조형 장치 개발)

  • Yun, Hae-Yong;Ko, Tae-Jo;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.15-20
    • /
    • 2014
  • The stereolithography(SL) process is a type of fabrication technology which relies on photopolymerization. It has a relatively simple fabrication process and a resolution of several tens of ${\mu}m$. Recently, SL technology has been applied to various areas, such as bioengineering and MEMS devices, due to the development of advanced materials. This technologycan be divided intothe scanning(SSL) and projection (PSL) types. In this paper, in stereolithography, parts are fabricated by curing photopolymeric resins with light. The application of stereolithography can now include fabricated parts. This process, called stereolithography, can fabricate parts by taking into account theirdegrees of geometry complexity. In particular, UV-LED stereolithography can perform quite rapid fabrication in which specific cross-sections are cured upon exposure to light.

Development of Projection Scanbeam-SLA using Liquid Crystal Display and Visible Light Emitting Diode (LCD와 가시광선 LED를 사용한 전사방식의 Scanbeam-SLA 개발)

  • Yoon, Su Hyun;Park, In Baek;Kim, Min Sub;Jo, Kwang Ho;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.340-348
    • /
    • 2013
  • In Projection Stereolithography Apparatus (PSLA), Digital Micromirror Device (DMD) and Liquid Crystal Display (LCD) are used as a beam pattern generator. The DMD shows high resolution, but it is mostly applied in micro stereolithography due to high cost and fabricable area. In LCD, the size of pattern beam is freely controlled due to various panel sizes. The LCD, however, has some limitations such as short life time by the high power light source, non-uniform light intensity of pattern beam and low transmittance of UV-light. To solve these problems in LCD-based PSLA, a Scanbeam-SLA with LCD of 19 inches and visible LED-array is developed. In this system, the light module works like a scanner for uniform illumination. The system configuration, working principle and fabrication examples are addressed in this study.

Development of High-Performance, Low-Cost 3D Printer Using LCD and UV-LED (LCD와 UV-LED 를 사용한 고성능, 저비용의 3D Printer 개발)

  • Jo, Kwang Ho;Jang, Hyeon Suk;Ha, Young Myoung;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.917-923
    • /
    • 2015
  • 3D Printing has a great advantage for its capabilities in manufacturing complicated structures in a reasonable manufacturing time, and thus is widely used in various fields. Due to the high cost of the equipment and material, a fairly acceptable equipment, the Projection Stereolithography Apparatus (PSLA), has been developed, using the projection pattern approach for the purpose of quick manufacturing. We evaluated its surface quality, as compared with that of other systems. The result is the development of a high-performance, low-cost 3D Printer and its operating software, using LCD and UV LED. Working materials for an optimal manufacturing are suggested in the research, along with some suggestions of basic approaches for enhancing the accuracy and quality of the manufactured structures.