• 제목/요약/키워드: Projectile

Search Result 399, Processing Time 0.037 seconds

A Study on the Thrust and Flow Characteristics of High Spin RAP(Rocket Assisted Projectile) (고속 회전하는 RAP(Rocket Assisted Projectile)의 추력 및 유동 특성에 관한 연구)

  • Ban, Youngwoo;Jung, Hyunho;Park, Juhyeon;Joo, Hyeonguk;Lee, Chihoon;Park, Yongin;Yoon, Jongwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1072-1076
    • /
    • 2017
  • In this paper, a numerical study has been performed to analyze flow characteristics of rocket propulsion. Through the ground spin test, combustion chamber pressure was measured. Based on the experimental results, numerical analysis was conducted under various nozzle pressure ratio conditions such as standard, operating and base pressure conditions. And it was compared with quasi-1D solution and experimental result. In addition, the difference in thrust characteristics according to the spin/non-spin of the flow conditions was confirmed at the same nozzle pressure ratio.

  • PDF

Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile (이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석)

  • Lee, Sang-bong;Choi, Nak-sun;Lee, Jong-hyeon;Kim, Sang-min;Kang, Byung-duk
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

Experimental Study on Validation of Nose Shape Factors of Projectile in Existing Impact formulas for High-Strength Concrete (고강도콘크리트에 대한 기존 내충격 성능평가식의 비상체 선단형상계수 유효성 평가 실험 연구)

  • Kim, Sang-Hee;Kang, Thomas H.K.;Hong, Sung-Gul
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.2
    • /
    • pp.13-20
    • /
    • 2019
  • This study was conducted in order to validate the nose shape factors of projectile in existing impact formulas for high-strength concrete in the event of collision with high-speed projectiles. In order to conduct the high-speed impact experiment, specified concrete strengths of 35, 100, and 120 MPa were prepared and tested in collision with both conical and hemispherical projectiles. The results showed that the measured penetration depth did not decrease linearly as concrete strength increased. Comparing the ratio penetration depth to the kinetic energy of the conical and hemispherical projectiles, the difference in the ratios for high strength concrete was observed to decline as concrete strength increased. However, in the modified NDRC and the Hughes formulas, the difference in the predicted penetration depth of the conical and hemispherical projectiles was constant despite increasing concrete strength. The modified NDRC and Hughes formulas should be improved upon so as to be applied to high strength concrete.

Numerical investigation of water-entry characteristics of high-speed parallel projectiles

  • Lu, Lin;Wang, Chen;Li, Qiang;Sahoo, Prasanta K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.450-465
    • /
    • 2021
  • In this study, an attempt has been made to investigate the water-entry characteristics of the high-speed parallel projectile numerically. The shear stress transport k-𝜔 turbulence model and the Zwart-Gerber-Belamri cavitation model based on the Reynolds-Averaged Navier-Stokes method were used. The grid independent inspection and grid convergence index is carried out and verified. The influences of the parallel water-entry on flow filed characteristics, trajectory stability and drag reduction performance for different values of initial water-entry speed (𝜈0 = 280 m/s, 340 m/s, 400 m/s) and clearance between the parallel projectiles (Lp = 0.5D, 1.0D, 2.0D, 3.0D) are presented and analyzed in detail. Under the condition of the parallel water-entry, it can be found that due to the intense interference between the parallel projectiles, the distribution of cavity is non-uniform and part of the projectile is exposed to water, resulting in the destruction of the cavity structure and the decline of trajectory stability. In addition, the parallel projectile suffers more severe lateral force that separates the two projectiles. The drag reduction performance is impacted and the velocity attenuation is accelerated as the clearance between the parallel projectiles reduces.

Fabric Weavability and Machine Efficiency in the Various Weaving Machines such as Projectile, Rapiers, and Air-jet (프로젝타일, 래피어 그리고 에어젯트 직기의 제직성과 직기효율)

  • Kim, S.J.;Yeo, G.D.
    • Textile Coloration and Finishing
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • This paper surveys the fabric weavability and machine efficiency in the various weaving looms such as Projectile, Rapiers, and Air-jet. Used projectile loom was Sulzer-PU, and FAST-R, THEMA-11E, and Picanol-GTX were used for Rapier looms, as the Air-Jet looms, Picanol PAT and OMNI types were used. Using these looms, 5 harness worsted satin fabrics were woven for surveying the fabric weavability and machine efficiency. Warp yam count of fabric is 1/40Nm, Sirofil, and filling is 1/30 Nm, worsted. End breaks of warp and filling directions for the various types of looms are measured and discussed with the mechanism of each loom. Warp and filling yam tensions are also measured and analysed with open width of shedding motion of each weaving machine. And various warp yam tensions with open width of shedding are measured and analysed according to the warp yam in various heald frame. These results fire also discussed with temples such as bar and ring. Warp yam tensions at the various positions on the fabric with various looms are measured and discussed with fabric mechanical properties such as tensile, bending, shear and surface.

  • PDF

Design and Experiment of Coil gun to Apply Electomagnetic Launcher System (전자기 발사장치에 적용 가능한 코일건 설계 및 실험)

  • Lee, Su Jeong;Kim, Jin Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3455-3459
    • /
    • 2014
  • This paper reports the design and experiments for a high drive force of projectile in a coil gun system. Currently, the coil gun has been studied to apply an electromagnetic launcher. A coil gun launches a projectile by the attractive magnetic force of the electromagnetic coil. The drive force of projectile is proportional to the magnetic force generated by the electromagnetic coil. The current affects the life of the coil and the current limit exists. Therefore, the coil gun design, which does not exceed the current limit and the magnetic forces are at the maximum, is required. For this purpose, this study calculated the magnetic flux density and forces of the coil gun system and determined the current limit of the coil using the Onderdonk's equation. Based on the design result, a prototype was manufactured and an experiment was conducted to measure the muzzle velocity of the projectile. The fired projectile was analyzed using a CCD camera, and the muzzle velocity was 21m/s. In addition, a comparison of the experimental value and analysis value using commercial electromagnetic analysis software MAXWELL revealed an error of approximately 9.5%.

Mathcad program as a useful tool for the teaching and studying the sport biomechanics (운동역학의 교육과 연구용 도구로서 Mathcad의 유용성)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.301-311
    • /
    • 2004
  • The purpose of this study was to verify the usefulness of the Mathcad program as a tool for the studying and teaching the sport biomechanics. A projectile motion was analyzed because it is the one of the most popular motion in sports activities. A 3 dimensional CG data for the high jump bar clear phase was used to calculate the initial velocity vector of the CG. Linear regression function and other functions such as cubic spline and derivative of Mathcad were used to calculate this vector. Finally, the approach angle to the bar and peak jump height was calculated. Programming in Mathcad was relatively easy compare to traditional computer language such as Fortran and C, because of the unique documentation method of Mathcad. Additionally the 2 and 3 dimensional graph function was very easy and useful to describe the mechanical data. If the use of Mathcad program is more popular in the field of sport biomechanics, it could greatly contribute to overcome the limit of research caused by the lack of proper programming ability.

The Study of Impact Analysis about Inertia Measure Unit of High Speed along Impact curve (충격곡선에 따른 고속발사체 내부 관성측정장치에 미치는 충격의 수치해석적 연구)

  • Kang, Minkyu;Tak, Seungmin;Park, Dongjin;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.29-33
    • /
    • 2012
  • This paper is focusing on the difference from experiment result and method through dynamic loaded from impact analysis about inertia measure unit of high speed projectile. At Inertia measure unit dynamic load is applied when the high speed projectile is operated by impact to inside. it is necessary to design inertia measure unit enduring from external effect with operating environment. Investigation of material deformation with high strain speed is performed for military purpose, and still concerned to many scientist. From this study, this paper will prove of impact analysis result through comparing with experiment result and method when applied dynamic load.

The Development of Momentum Conversion Type Micro Punch System using Elastic Collision (탄성충돌을 이용한 운동량 보존형 마이크로 펀치 시스템의 개발)

  • 장인배;장현철;최근형;김병희;김현영
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.128-133
    • /
    • 2003
  • In this study, the momentum conservation type punching mechanism for micropunching system was developed to avoid the punch failure in the misaligned status between the punch and die. The punching energy can be precisely controlled by the falling height of the projectile mass and the intermediata mass, which contacts with the punch, transmit the energy to the punch with the same contact condition. The potential energy of the projectile mass is converted to kinetic energy at the light weight punch that the projection speed into the sheet metal workpiece can be accelerated. The butt formation characteristics for the alignment condition and for the projection speeds are investigated to verify the feasibility of the proposed punching mechanism.

A study on Effects of Parameters in the Lagrangian Code based on F.E.M. through Oblique Dual-Plates Perforation Phenomena (관통자에 의한 경사복판의 관통현상에서 유한요소법을 근간으로한 라그랑지 코드의 변수의 영향에 관한 연구)

  • Kim, Ha-youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.55-60
    • /
    • 2004
  • This study is concerned to the perforation phenomena of the oblique dual-plate by projectile. Experiment and simulation related to that was carried out. the variables considered in this phenomena include the electrolytic zinc coated steel sheet and carbon steel rod. In the former, the confirmation and projectile velocity possible phenomena of real phenomena is done, the latter, the effect of parameter such as time-step and grid space length is analized by using the three-dimensional Lagrangian explicit time-integration finite element code, HEMP. this code use the eight node hexahedral elements and in this study, Von-Mises Criteria is used as the strength model, Mie-Gruneisen is as the Equation of State. the simulation was performed by contrast with the experiment. through the calibration of the parameter of lagrangian code, reasonable result was approached.

  • PDF