• Title/Summary/Keyword: Projected range

Search Result 156, Processing Time 0.025 seconds

Analytical and Numerical Study on Mechanical Behavior of Unit Cell of Pyramidal Truss Core Structures (피라미드 트러스 코어 단위셀의 기계적 특성에 관한 해석적 및 수치적 연구)

  • Kim, Sang-Woo;Lee, Young-Seon;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.623-631
    • /
    • 2011
  • Metallic sandwich panels based on a truss core structure have been developed for a wide range of potential applications with their lightweight and multi-functionality. Structural performance of sandwich panels can be predicted from the studies on mechanical behavior of a unit cell of truss core structures. Analytical investigations on the unit cell provide approximated guidelines for the design of overall core structures for a specific application in short time. In this study, the effects of geometrical parameters on mechanical behavior of a pyramidal shape of unit cell were investigated with analytical models. The unit cell with truss member angle of 45 degree was considered as reference model and other models were designed to have the same weight and projected area but different truss member angle. All truss members were assumed to be connected with pin joint in analytical models. Under the assumptions, the equivalent strength and stiffness of the unit cell under compressive and shear loads were predicted and compared. And finally, the optimum core member angle to have maximum mechanical property could be calculated and verified with FE analysis results.

Thermal Analysis on the Engineering Model of Command and Telemetry Unit for a Geostationary Communications Satellite (정지궤도 통신위성의 원격측정명령처리기 기술모델 열해석)

  • Kim, Jung-Hoon;Koo, Ja-Chun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.114-121
    • /
    • 2004
  • Thermal design changes and analysis on the engineering model of Command Telemetry Unit(CTU) for a geostationary communications satellite arc performed for the purpose of developing an engineering qualification model. A thermal model is developed by using power consumption measurement values of each functional board and thermal cycling test results. In modeling heat dissipated EEE parts, heat dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board. All the EEE parts of CTU meet the requirement of their allowable temperature range when placed on the engineering qualification level of thermal vacuum environments in accordance with the proposed thermal design changes.

NEW SPECTROSCOPIC METHODS FOR THE SIMULTANEOUS ESTIMATION OF FUNDAMENTAL ATMOSPHERIC PARAMETERS USING THE LINE DEPTH RATIOUS

  • Kim, Chul-Hee;Moon, B.K.;Lee, I.H.
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.2
    • /
    • pp.25-29
    • /
    • 2012
  • New methods are developed to estimate the effective temperature (Te), surface gravity (log g), and metallicity ([A/H]) simultaneously with the spectral line depth ratios. Using the model atmosphere grids, depth values are calculated for the wavelength range of $4000{\AA}-5600{\AA}$ for various temperatures, gravities, and metallicities. All possible different combinations of line depth ratios for different pairs of ratios are investigated. A graphical 3D figure is produced with X, Y, and Z axes corresponding to Te, log g, and [A/H], respectively. By reading a cross point of two curves plotted by a connection of three parameters obtained from spectral line depth ratio pairs on each of the three projected planes, Te, log g, and [A/H] are determined simultaneously. In addition, an analytical method is devised based on the similar algorithm developed for the graphical method. Our methods were applied to estimate the fundamental atmospheric parameters of the Sun and Arcturus.

Double-Layer 3D Rear Projection Display System using Scattering Polarizer Film (후면투사 방식의 이중스크린 3D 프로젝션 디스플레이)

  • Kim, Tae-Ho;Seo, Jong-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.421-425
    • /
    • 2007
  • A new 3D rear projection display system using double-layer polarization-selective screen systems, one stacked in front of the other, has been developed. The front and rear screens are made of scattering polarizer films, and they either diffuse-scatter or transmit the incident light depending on the polarization state of the light. The near and for images are projected onto the front and rear screens, respectively, using light waves with mutually orthogonal polarization states. The new display system produces clear high-resolution images, which are visible over a wide range of viewing angle. It was found that the impression of depth is pronounced and eyestrain is only comparable to that by 2D display systems.

Effect of Nitrogen Ion Implantation on Wear Behavior of Biocompatible Ti Implant (질소이온 주입이 생체적합성 티타늄 임플란트의 마모특성에 미치는 영향)

  • Byeon, Eung-Seon;Kim, Dong-Su;Lee, Gu-Hyeon;Jeong, Yong-Su
    • 연구논문집
    • /
    • s.30
    • /
    • pp.137-145
    • /
    • 2000
  • Since the concept of osseointegration was introduced, titanium and titanium-based alloy materials have been increasingly used for bone-anchored metal in oralmaxillofacial and orthopedic reconstruction. Successful osseointegration has been attributed to biocompatibility and surface condition of metal implant among other factors. Although titanium and titanium alloys have an excellent over the metal ion release and biocompatibility, considerable controversy has developed over the metal ion and wear debris in vivo and vitro. In this study, nitrogen ion implantation technique was used to improve the corrosion resistance and wear property of titanium materials, ultimately to enhance the tissue reaction to titanium implants As ion implantation energy was increased, projected range of nitrogen ion the Ti substrate was gradually increased. Under condition of constant ion energy. atomic concentration of nitrogen was also increased with ion doses. The friction in Hank's solution was increased with ion doses. The friction coefficient of ion implanted specimens in HanK's solution was increased from 0.39, 0.47 to 0.52, 0.65 respectively under high energy and ion dose conditions. As increasing ion energies and ion dose, amount of wear was reduced.

  • PDF

A Study on High Energy Ion Implantation for Retrograde Well Formation (Retrograde Well 형성을 위한 고에너지 이온주입에 대한 연구)

  • 윤상현;곽계달
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.358-364
    • /
    • 1998
  • Retrograde well is a new process for ULSI fabrication. High energy ion implantation has been used for retrograde well formation. In this paper the forming condition for retrograde well using high energy ion implantation is compared with that for conventional well. TW signals for retrograde p-,n-well($900^{\circ}C$),after annealing are similar trends to those of conventional ones($1150^{\circ}C$), however the signals for RTA have the highest value because of small thermal budget. Junction depths of retrograde well are varied from about 1.2 to $3.0\{mu}m$ as for conventional well. The peak concentrations of retrograde well, however, are about 10 times higher in values than those of conventional ones so that they can be used as any types of potential barriers or gettering sites. The critical dose for phosphorus implantation in our experiments is between $3\times10^{13} and 1\times10^{14}/cm^2$. Under the above critical dose, there are many secondary defects near projected range such as dislocation lines and dislocation loops.

  • PDF

THREE-STAGED RISK EVALUATION MODEL FOR BIDDING ON INTERNATIONAL CONSTRUCTION PROJECTS

  • Wooyong Jung;Seung Heon Han
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.534-541
    • /
    • 2011
  • Risk evaluation approaches for bidding on international construction projects are typically partitioned into three stages: country selection, project classification, and bid-cost evaluation. However, previous studies are frequently under attack in that they have several crucial limitations: 1) a dearth of studies about country selection risk tailored for the overseas construction market at a corporate level; 2) no consideration of uncertainties for input variable per se; 3) less probabilistic approaches in estimating a range of cost variance; and 4) less inclusion of covariance impacts. This study thus suggests a three-staged risk evaluation model to resolve these inherent problems. In the first stage, a country portfolio model that maximizes the expected construction market growth rate and profit rate while decreasing market uncertainty is formulated using multi-objective genetic analysis. Following this, probabilistic approaches for screening bad projects are suggested through applying various data mining methods such as discriminant logistic regression, neural network, C5.0, and support vector machine. For the last stage, the cost overrun prediction model is simulated for determining a reasonable bid cost, while considering non-parametric distribution, effects of systematic risks, and the firm's specific capability accrued in a given country. Through the three consecutive models, this study verifies that international construction risk can be allocated, reduced, and projected to some degree, thereby contributing to sustaining stable profits and revenues in both the short-term and the long-term perspective.

  • PDF

A 3D measurement system based on a double frequency method using Fourier transform profilometry (FTP를 이용한 이중 파장법에 의한 3차원 형상 측정)

  • Koo, Ja-myoung;Cho, Tai-hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1485-1492
    • /
    • 2015
  • This paper proposes a double frequency method using FTP(Fourier Transform Profilometry) in fringe projection techniques for 3D measurement systems. In fringe projection techniques, fringe pattern images are projected and captured, and then object is measured by analysing phase. PMP(Phase Measuring Profilometry) for analysing phase provides high-resolution and is robust to object's reflection and background intensities. However, the measurement range is narrow due to 2π ambiguity. In order to overcome this problem, a double frequency method is often used. This method can widen the range of measurement while maintaining the high-resolution, but the measurement time is taken about twice due to grab 2 times number of images. The proposed double frequency method using FTP requires an additional image for resolving 2π ambiguity. The proposed method effectively reduces the measurement time while maintaining the same accuracy.

Projecting the Potential Distribution of Abies koreana in Korea Under the Climate Change Based on RCP Scenarios (RCP 기후변화 시나리오에 따른 우리나라 구상나무 잠재 분포 변화 예측)

  • Koo, Kyung Ah;Kim, Jaeuk;Kong, Woo-seok;Jung, Huicheul;Kim, Geunhan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.19-30
    • /
    • 2016
  • The projection of climate-related range shift is critical information for conservation planning of Korean fir (Abies koreana E. H. Wilson). We first modeled the distribution of Korean fir under current climate condition using five single-model species distribution models (SDMs) and the pre-evaluation weighted ensemble method and then predicted the distributions under future climate conditions projected with HadGEM2-AO under four $CO_2$ emission scenarios, the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5. We also investigated the predictive uncertainty stemming from five individual algorithms and four $CO_2$ emission scenarios for better interpretation of SDM projections. Five individual algorithms were Generalized linear model (GLM), Generalized additive model (GAM), Multivariate adaptive regression splines (MARS), Generalized boosted model (GBM) and Random forest (RF). The results showed high variations of model performances among individual SDMs and the wide range of diverging predictions of future distributions of Korean fir in response to RCPs. The ensemble model presented the highest predictive accuracy (TSS = 0.97, AUC = 0.99) and predicted that the climate habitat suitability of Korean fir would increase under climate changes. Accordingly, the fir distribution could expand under future climate conditions. Increasing precipitation may account for increases in the distribution of Korean fir. Increasing precipitation compensates the negative effects of increasing temperature. However, the future distribution of Korean fir is also affected by other ecological processes, such as interactions with co-existing species, adaptation and dispersal limitation, and other environmental factors, such as extreme weather events and land-use changes. Therefore, we need further ecological research and to develop mechanistic and process-based distribution models for improving the predictive accuracy.

Climate Change and Coping with Vulnerability of Agricultural Productivity (기후변화와 농업생산의 전망과 대책)

  • 윤성호;임정남;이정택;심교문;황규홍
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF