• Title/Summary/Keyword: Project cost

Search Result 2,467, Processing Time 0.039 seconds

A Study on Information Collection and Idea Creation Using Drones (드론을 활용한 정보수집 및 아이디어 창출에 관한 연구)

  • Jo, Hwani;Yoo, Jaewon;Choi, Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.117-124
    • /
    • 2024
  • The objective of Value Engineering (VE) is to derive the optimal value at the most efficient life cycle cost, comprising three stages: Pre-Study, Study, and Post-Study. In this study, we propose a method for information collection and analysis during planned site visit surveys in the preparation stage of VE. The 3D spatial model, created using a drone, facilitated observation and analysis of the study area from various angles, both from the center and the outside. Additionally, through the utilization of drones, we conducted on-site investigations of the research area's 3D spatial model, enabling a macroscopic perspective previously only feasible through a microscopic viewpoint during planned site visits in the pre-study phase. Furthermore, the utilization of actual spatial data obtained from observations allowed for real-time information verification during Design VE workshops, enhancing the efficiency and reliability of the VE project.

Institutional and Technical Improvement Measures to Facilitate the Use of Smart Construction Safety Technology (스마트 건설안전 기술 도입 촉진을 위한 제도적⋅기술적 개선 방안에 관한 연구)

  • Jaehyun Jeong;Sang I. Park;Hyungtaek Sim;Yuhee Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.41-54
    • /
    • 2024
  • Efforts to reduce on-site safety incidents have expanded, leading to active research in this domain. However, a systematic analysis to improve the utility of technology is lacking. In this study, we conducted a survey on the various institutional and technical improvement measures to promote the application of smart construction safety technology over three years after the implementation of the "Smart Safety Equipment Support Project." The results showed that financial constraint was the primary obstacle in the adoption of this innovation. Fostering a flexible environment in the utilization of management fees and financial support of projects was determined to aid in the extensive application of the technology. Ensuring cost efficiency and user-friendliness were principally necessary for technical enhancements in the smart construction safety technology. Technologies, such as VR/AR safety education, real-time location tracking, wearable devices, and innovation on streamlining safety-related work efficiency, had been anticipated to contribute to on-site safety. Operating a smart safety control center was expected to be beneficial in the systematic securing of data and reduction of safety blind spots. Effective methods had been suggested to overcome the barriers that hindered the development and application of smart construction safety technology. This study facilitates in the technological improvements in this field.

Mobile Ultra-Broadband, Super Internet-of-Things and Artificial Intelligence for 6G Visions

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.235-245
    • /
    • 2023
  • Smart applications based on the Network of Everything also known as Internet of Everything (IoE) are increasing popularity as network connectivity requires rise further. As a result, there will be a greater need for developing 6G technologies for wireless communications in order to overcome the primary limitations of visible 5G networks. Furthermore, implementing neural networks into 6G will bring remedies for the most complex optimizing networks challenges. Future 6G mobile phone networks must handle huge applications that require data and an increasing amount of users. With a ten-year time skyline from thought to the real world, it is presently time for pondering what 6th era (6G) remote correspondence will be just before 5G application. In this article, we talk about 6G dreams to clear the street for the headway of 6G and then some. We start with the conversation of imaginative 5G organizations and afterward underline the need of exploring 6G. Treating proceeding and impending remote organization improvement in a serious way, we expect 6G to contain three critical components: cell phones super broadband, very The Web of Things (or IoT and falsely clever (artificial intelligence). The 6G project is currently in its early phases, and people everywhere must envision and come up with its conceptualization, realization, implementation, and use cases. To that aim, this article presents an environment for Presented Distributed Artificial Intelligence as-a-Services (DAIaaS) supplying in IoE and 6G applications. The case histories and the DAIaaS architecture have been evaluated in terms of from end to end latency and bandwidth consumption, use of energy, and cost savings, with suggestion to improve efficiency.

Comparison and Analysis for the Topology of Bladeless Wind Power Generator (블레이드리스 풍력발전기의 토폴로지에 관한 비교·분석)

  • Junhyuk Min;Sungin Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • This study focuses on the modeling and analysis of the linear generator for a bladeless wind power generation to overcome the limitations and drawbacks of conventional wind turbines. A bladeless wind power generation system has the advantages of low land requirement for installation and maintenance cost compared to a blade wind power turbine. Nevertheless, question concerning the generator topology are not satisfying answered. The goal of the research is to compare and analyze the characteristics of horizontal and vertical structures of linear generator for bladeless wind power systems. The proposed topology will be analyzed using magnetic energy by equivalent magnetic circuit method, and then it has been compared and evaluated by finite element method. The results of this project will give elaborate information about new generator structures for wind power system and provide insights into the characteristics of bladeless wind power generation.

A Study on Automated Reinforcement Detailing for Reinforced Concrete Structures Using BIM (BIM 기반 철근콘크리트 구조물의 자동 배근 모델 생성)

  • Park, U-Yeol;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.507-515
    • /
    • 2024
  • Recent advancements in Building Information Modeling(BIM) have significantly impacted the construction industry, driving competitiveness and innovation. However, rebar construction, a critical component influencing project quality and cost, has lagged behind in BIM adoption. Traditional methods relying heavily on 2D drawings for rebar detailing have hindered efficiency and introduced potential errors. This paper presents a novel system designed to automate the detailed modeling of rebar, thereby promoting BIM integration within rebar construction and optimizing construction management processes. The system leverages confirmed structural drawings from the post-structural design phase to automatically generate intricate rebar models for columns and beams. To ensure adherence to domestic structural design standards, the system is developed using C# programming language and the Revit API. By automating rebar modeling, this system aims to minimize human error, reduce labor-intensive tasks, and enhance overall rebar construction efficiency through the effective utilization of generated rebar model data.

Energy Performance and Operating Cost Assessment for Implementing Green Remodeling Technologies in a Detached House (단독주택 건물 그린리모델링에 따른 건물 에너지 성능과 운전비용 절감 효과 평가)

  • Byonghu Sohn;Su-In Lee;Jae-Sik Kang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.27-38
    • /
    • 2023
  • The Government the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of buildings and to promote green growth policy in construction sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. Green remodeling reinforced the insulation of the exterior walls and roofs of the buildings and replaced high-efficiency windows and doors. In this study, the energy performance before and after green remodeling applied in a detached house was comparatively analyzed for baseline scenario and three different ones, ALT 1, ALT 2 and ALT 3. A building modeling and simulation software (DesignBuilder V7.0) with EnergyPlus (V9.4) calculation engine was used to calculate the energy demand and energy consumption for each scenario. Based on the calculation results of the building's energy demand for baseline, it was determined that the target building required more heating energy than cooling energy. The simulation results also showed that the implementation of building envelope performance improvement technologies (ALT 1) could notably decrease the heating energy consumption of the building. After the remodeling (ALT 1), the source energy consumption per unit floor area was assessed to be reduced by 65.2%, compared to prior remodeling of 338.7 kWh/m2 -y. Meanwhile, ALT 2 can achieve energy savings of 67.7% and ALT 3 can achieve savings of 73.1%. Following completion of the remodeling project, actual construction costs, and on-site measurements and verification results will be gathered and compared with the simulation results. Additionally, economic analysis including construction costs and payback period will be conducted using actual site data.

Discrepancy between South Korea's ZEB Certification System and its Real Energy Saving Effects: An Empirical Analysis

  • Kyoungyun Jung;Handon Kim;Minjae Lee;Donggeun Oh;Jimin Kim;Hyounseung Jang
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1314-1314
    • /
    • 2024
  • Since 2017, South Korea has been the first country in the world to implement a national certification system for Zero Energy Buildings (ZEB). This system aims to maximize the energy efficiency of buildings to reduce greenhouse gas emissions and reduce energy consumption in the building sector using renewable energy. To achieve this goal, the ZEB certification system classifies green buildings into five grades based on the energy independence rate. However, the current ZEB certification system based on the energy independence rate is only considered a requirement for building completion, losing its original intent. This study aims to highlight the problems and limitations of the ZEB certification system based on the energy independence rate and to propose an operational plan for the system that can genuinely reduce energy consumption in the building sector. For this, the actual energy consumption and the renewable energy production referenced during the certification of 10 ZEB-certified buildings were quantified and compared with the energy independence rate. The total energy consumption, energy production, life cycle cost, performance coefficient of equipment, and other key indicators were analyzed to evaluate the actual effects of ZEB certification on energy savings. As a result, the simple energy independence rate-based ZEB certification was judged to be inconsistent with the original intent of the system. The ZEB certification system needs to be re-established to reflect the design of systems that can activate and utilize energy savings and renewable energy usage in buildings. Additionally, improvements in the management and inspection systems are necessary to determine how much they contribute to actual reductions in greenhouse gas emissions and energy consumption post-certification.

Facility Asset Management (FAM) Business Function from the Context of Smart Buildings (SBs)

  • Dagem Derese GEBREMICHAEL;Zhenhui JIN;Yunsub LEE;Youngsoo JUNG
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1315-1315
    • /
    • 2024
  • In recent years, the building industry has seen a fundamental transition due to Digitalization Transformation (DX), with the aim of improving efficiency, productivity, sustainability, and cost-effectiveness. In particular, literature has significantly emphasized Smart Buildings (SBs), which are expected to grow in the global marketplace in the coming years. The most noticeable benefits include energy efficiency, increased occupant comfort and productivity, and a reduction in the building's impact on the environment. Most importantly, the shift to SBs has resulted in major changes to how traditional business practices are carried out. The Facility Asset Management (FAM) domain is one key area undergoing considerable changes to meet the needs of managing functional SBs. Despite this shifting landscape, the changes and prospective extensions to the business areas of FAM in the context of SBs remain largely unexplored. Thus, to address this limitation, this paper aims to investigate the potential changes (i.e., either the addition of a new function or the expansion of an existing function) of the FAM domain from the context of SBs. To achieve this objective, • First, based on a generic model of FAM proposed by Jin et al. (2024), a three-level hierarchical classification of FAM business functions for a conventional building is proposed. • Second, the concept of SBs is thoroughly discussed, including its drivers, features, enablers, and improvement areas. • Finally, a new FAM business function for SB is proposed, aligning with the distinct characteristics of SBs. As there are no established functional taxonomies of FAM, the comprehensive breakdown of FAM business functions presented in this study can be used as a standardized functional breakdown of the FAM domain. Moreover, it can also be used to facilitate robust and integrated information management practices throughout the whole lifecycle of SB facilities.

Advancing Road Infrastructure Management and Safety Through Pothole Classification Standards and Technology: A South Korean Perspective

  • Wonwoo SHIN;Kyubyung KANG;Sungkon MOON
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1035-1040
    • /
    • 2024
  • South Korea has seen an increased demand for road maintenance, since they experienced a rapid industrialization in 1960-70s. Between 2019 and the end of 2022, the total national expenditure on road maintenance steadily rose from KRW 3.4 trillion to KRW 4.5 trillion. Roads, responsible for about 80% of the nation's transportation, significantly affect ride quality, safety and maintenance costs. Among the different perspectives, this study focuses on the prevalence of potholes. Over 24,000 pothole instances are reported on highways in the past five years, which raises concerns due to various direct and indirect effects on road maintenance and safety issues. Various methods, including vision-based, vibration-based, and 3D reconstruction-based techniques, have been proposed for pothole detection and inspection. Vision-based methods effectively count and measure pothole shapes but which are sensitive to lighting conditions. Vibration-based methods offer cost-effectiveness, although it may not provide precise pothole shape information. 3D reconstruction-based methods deliver accurate shape measurements, while it comes with higher costs. To establish an effective road maintenance system, prioritization criteria for potholes is required to be established and applied. These criteria may vary across countries or regions. For example, in the United States, potholes are classified based on depth into Low (<25mm deep), Moderate (25 to 50mm deep), and High (>50mm deep). In conclusion, this research addresses this research challenge of road damage and potholes in South Korea by exploring various pothole classification standards and utilizing advanced technology to develop an efficient road maintenance system. The outcome would benefit improved road infrastructure management and enhanced safety.

Enhancement of concrete crack detection using U-Net

  • Molaka Maruthi;Lee, Dong Eun;Kim Bubryur
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.152-159
    • /
    • 2024
  • Cracks in structural materials present a critical challenge to infrastructure safety and long-term durability. Timely and precise crack detection is essential for proactive maintenance and the prevention of catastrophic structural failures. This study introduces an innovative approach to tackle this issue using U-Net deep learning architecture. The primary objective of the intended research is to explore the potential of U-Net in enhancing the precision and efficiency of crack detection across various concrete crack detection under various environmental conditions. Commencing with the assembling by a comprehensive dataset featuring diverse images of concrete cracks, optimizing crack visibility and facilitating feature extraction through advanced image processing techniques. A wide range of concrete crack images were collected and used advanced techniques to enhance their visibility. The U-Net model, well recognized for its proficiency in image segmentation tasks, is implemented to achieve precise segmentation and localization of concrete cracks. In terms of accuracy, our research attests to a substantial advancement in automated of 95% across all tested concrete materials, surpassing traditional manual inspection methods. The accuracy extends to detecting cracks of varying sizes, orientations, and challenging lighting conditions, underlining the systems robustness and reliability. The reliability of the proposed model is measured using performance metrics such as, precision(93%), Recall(96%), and F1-score(94%). For validation, the model was tested on a different set of data and confirmed an accuracy of 94%. The results shows that the system consistently performs well, even with different concrete types and lighting conditions. With real-time monitoring capabilities, the system ensures the prompt detection of cracks as they emerge, holding significant potential for reducing risks associated with structural damage and achieving substantial cost savings.