• Title/Summary/Keyword: Project Uncertainties

Search Result 120, Processing Time 0.02 seconds

Design Flood Estimation for Pyeongchang River Basin Using Fuzzy Regression Method (Fuzzy 회귀분석기법을 이용한 평창강 유역의 설계홍수량 산정)

  • Yi, Jaeeung;Kim, Seungjoo;Lee, Taegeun;Ji, Jungwon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.1023-1034
    • /
    • 2012
  • Linear regression technique has been used widely in water resources field as well as various fields such as economics and statistics, and so on. Using fuzzy regression technique, it is possible to quantify uncertainty and reflect them to the regression model. In this study, fuzzy regression model is developed to compute design floods in any place in Pyeongchang River basin. In ungaged basins, it is usually difficult to obtain data required for flood discharge analysis. In this study, basin characteristics elements are analyzed spatially using GIS and the technique of estimating design flood in ungaged mountainous basin is studied based on the result. Fuzzy regression technique is applied to Pyeongchang River basin which has mountainous basin characteristics and well collected rainfall and runoff data through IHP test basin project. Fuzzy design flood estimation equations are developed using the basin characteristics elements for Pyeongchang River basin. The suitability of developed fuzzy equations are examined by comparing the results with design floods computed in 9 locations along the river. Using regional regression method and fuzzy regression analysis, the uncertainties of the design floods occurred from the data monitoring can be quantified.

Analysis of Emergency Water Supply Effects of Multipurpose Dams Using Water Shortage Index (용수부족지표를 이용한 다목적댐의 비상용수 공급 효과 분석)

  • Lee, Gwang-Man;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1143-1156
    • /
    • 2012
  • One of the important purposes of most water resources systems is to prevent from drought damages. However, there are uncertainties in water supply plans from a reservoir due to factors such as limitation of available data, inaccuracy of surveyed data, unsuitability of analysis method, and climate change. In actual operating process, severe drought exceeding the water supply capability makes the normal water usage difficult. In Korea, however, alternative water source such as a development of new water project is very limited in case of water shortages due to drought. Especially, since there is no standard to evaluate the water supply effect considering severe drought damages, it is difficult to prepare the practical measures. In this study, water shortage events of existing multipurpose reservoirs are analyzed and the method of using low-storage emergency water supply is studied by using Water Shortage Index (WSI). The water shortage events are analyzed and the effect of water shortage decrease is evaluated using the existing inflow data of multi-purpose reservoirs. The results show that Imha, Daechung, Hapchon and Namkang reservoirs are highly vulnerable to the severe drought and required to develop additional emergency water source.

Prediction of Ground Condition and Evaluation of its Uncertainty by Simulated Annealing (모의 담금질 기법을 이용한 지반 조건 추정 및 불확실성 평가에 관한 연구)

  • Ryu Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.275-287
    • /
    • 2005
  • At the planning and design stages of a development of underground space or tunneling project, the information regarding ground conditions is very important to enhance economical efficiency and overall safety In general, the information can be expressed using RMR or Q-system and with the geophysical exploration image. RMR or Q-system can provide direct information of rock mass in a local scale for the design scheme. Oppositely, the image of geophysical exploration can provide an exthaustive but indirect information. These two types of the information have inherent uncertainties from various sources and are given in different scales and with their own physical meanings. Recently, RMR has been estimated in unsampled areas based on given data using geostatistical methods like Kriging and conditional simulation. In this study, simulated annealing(SA) is applied to overcome the shortcomings of Kriging methods or conditional simulations just using a primary variable. Using this technique, RMR and the image of geophysical exploration can be integrated to construct the spatial distribution of RM and to evaluate its uncertainty. The SA method was applied to solve an optimization problem with constraints. We have suggested the practical procedure of the SA technique for the uncertainty evaluation of RMR and also demonstrated this technique through an application, where it was used to identify the spatial distribution of RMR and quantify the uncertainty. For a geotechnical application, the objective functions of SA are defined using statistical models of RMR and the correlations between RMR and the reference image. The applicability and validity of this application are examined and then the result of uncertainty evaluation can be used to optimize the tunnel layout.

Past and Future Regional Climate Change in Korea

  • Kwon, Won-Tae;Park, Youngeun;Min, Seung-Ki;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.161-161
    • /
    • 2003
  • During the last century, most scientific questions related to climate change were focused on the evidence of anthropogenic global warming (IPCC, 2001). There are robust evidences of warming and also human-induced climate change. We now understand the global, mean change a little bit better; however, the uncertainties for regional climate change still remains large. The purpose of this study is to understand the past climate change over Korea based on the observational data and to project future regional climate change over East Asia using ECHAM4/HOPE model and MM5 for downscaling. There are significant evidences on regional climate change in Korea, from several variables. The mean annual temperature over Korea has increased about 1.5∼$1.7^{\circ}C$ during the 20th century, including urbanization effect in large cities which can account for 20-30% of warming in the second half of the 20th century. Cold extreme temperature events occurred less frequently especially in the late 20th century, while hot extreme temperature events were more common than earlier in the century. The seasonal and annual precipitation was analyzed to examine long-term trend on precipitation intensity and extreme events. The number of rainy days shows a significant negative trend, which is more evident in summer and fall. Annual precipitation amount tends to increase slightly during the same period. This suggests an increase of precipitation intensity in this area. These changes may influence on growing seasons, floods and droughts, diseases and insects, marketing of seasonal products, energy consumption, and socio-economic sectors. The Korean Peninsular is located at the eastern coast of the largest continent on the earth withmeso-scale mountainous complex topography and itspopulation density is very high. And most people want to hear what will happen in their back yards. It is necessary to produce climate change scenario to fit forhigh-resolution (in meteorological sense, but low-resolution in socio-economic sense) impact assessment. We produced one hundred-year, high-resolution (∼27 km), regional climate change scenario with MM5 and recognized some obstacles to be used in application. The boundary conditions were provided from the 240-year simulation using the ECHAM4/HOPE-G model with SRES A2 scenario. Both observation and simulation data will compose past and future regional climate change scenario over Korea.

  • PDF

A Model of Time Dependent Design Value Engineering and Life Cycle Cost Analysis for Apartment Buildings (공동주택의 시간의존적 설계VE 및 LCC분석 모델)

  • Seo, Kwang-Jun;Choi, Mi-Ra;Shin, Nam-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.6 s.28
    • /
    • pp.133-141
    • /
    • 2005
  • In the resent years, the importance of VE (value engineering) and LCC (life cycle cost) analysis for apartment building construction projects has been fully recognized. Accordingly theoretical models, guidelines, and supporting software systems were developed for the value engineering and life cycle cost analysis for construction management including large building systems. However, the level of consensus on VE and LCC analysis results is still low due to the lack of reliable data on maintenance. This paper presents time dependent LCC model based value analysis method for rational investment decision making and design alternative selection for construction of apartment building. The proposed method incorporates a time dependent LCC model and a performance evaluation technique by fuzzy logic theory to properly handle the uncertainties associated with statistics data and to analyze the value of alternatives more rationally. The presented time dependent VE and LCC analysis procedure were applied to a real world project, and this case study is discussed in the paper. The model and the procedure presented in this study can greatly contribute to design value engineering alternative selection, the estimation of the life cycle cost, and the allocation of budget for apartment building construction projects.

Development of Risk Analysis Structure for Large-scale Underground Construction in Urban Areas (도심지 대규모 지하공사의 리스크 분석 체계 개발)

  • Seo, Jong-Won;Yoon, Ji-Hyeok;Kim, Jeong-Hwan;Jee, Sung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.59-68
    • /
    • 2010
  • Systematic risk management is necessary in grand scaled urban construction because of the existence of complicated and various risk factors. Problems of obstructions, adjacent structures, safety, environment, traffic and geotechnical properties need to be solved because urban construction is progressed in limited space not as general earthwork. Therefore the establishment of special risk management system is necessary to manage not only geotechnical properties but also social and cultural uncertainties. This research presents the technique analysis by the current state of risk management technique. Risk factors were noticed and the importance of each factor was estimated through survey. The systemically categorized database was established. Risk extraction module, matrix and score module were developed based on the database. Expected construction budget and time distribution can be computed by Monte Carlo analysis of probabilities and influences. Construction budgets and time distributions of before and after response can be compared and analyzed 80 the risks are manageable for entire whole construction time. This system will be the foundation of standardization and integration. Procurement, efficiency improvement, effective time and resource management are available through integrated management technique development and application. Conclusively decrease in cost and time is expected by systemization of project management.

International Study and Transformational Learning: What Covid-19 Has Taught Us

  • Rodgers, Steve
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1221-1221
    • /
    • 2022
  • Studying abroad in and of itself should be a unique and transformational learning experience for university students. Too often, "study abroad" is a code word for "faculty vacation" or "easy credit hours". For an international learning experience to be truly transformational it must offer an intense and directed program that maximizes the time the student spends in the accumulation of information that is new or different from what the student has "learned" previously. "Study abroad" may be a misnomer because it is not only about studying in another country or culture, that is, taking courses that usually have an attendance time of a few hours a week, but it is also about living in another country which becomes a 24/7 learning experience. Providing these programs during the Covid-19 pandemic has been a keen opportunity for institutional learning. When this immersion in foreign culture is combined with academic rigor applied to a student's chosen field of study the growth can be exponential. So, what is the relationship between academic and personal growth? The National Association for Study Abroad has found that "students who have studied abroad are better able to work with people from other countries, understand the complexity of global issues, and have greater intercultural learning. One study found that students returned from their study abroad experiences more tolerant and less fearful of other countries, but with a greater sense of nationalism-a phenomenon they called 'enlightened nationalism'." It is often said that "you only really learn to appreciate things that are important to you when they are gone, when you miss them." The international learning environment can provide this opportunity. The restrictions on various societies in the past two years due to the international Covid pandemic have provided existing study abroad programs with a true testing ground for the validity of their programs. At the end of the day, American colleges and universities are not helpless in the face of these developments. A lot depends on how a university positions itself for a future based on the uncertainties of the past. As Winston Churchill was working to form the United Nations after WWII, he famously said, "Never let a good crisis go to waste". In another context, Churchill's insight on human nature can also be applied to the coming semesters and years as studying abroad rebounds. What new strategies will be developed and maintained? Institutional commitment without fear will be necessary to assure that "studying abroad" will continue to develop as a truly unique and transformational learning experience.

  • PDF

Valuation of Mining Investment Projects by the Real Option Approach - A Case Study of Uzbekistan's Copper Mining Industry - (실물옵션평가방법에 의한 광산투자의 가치평가 -우즈베키스탄 구리광산업의 사례연구를 중심으로-)

  • Makhkamov, Mumm Sh.;Kim, Dong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1634-1647
    • /
    • 2007
  • "To invest or not to invest?" Most business leaders are frequently faced with this question on new and ongoing projects. The challenge lies in deciding what projects to choose, expand, contract, defer, or abandon. The project valuation tools used in this process are vital to making the right decisions. Traditional tools such as discounted cash flow (DCF)/net present value (NPV) assume a "fixed" path ahead, but real world projects face uncertainties, forcing us to change the path often. Comparing to other traditional valuation methods, the real options approach captures the flexibility inherent to investment decisions. The use of real options has gained wide acceptance among practitioners in a number of several industries during the last few decades. Even though the options are present in all types of business decisions, it is still not considered as a proper method of valuation in some industries. Mining has been comparably slow to adopt new valuation techniques over the years. The reason fur this is not entirely clear. One possible reason is the level and types of risks in mining. Not only are these risks high, but they are also more numerous and involve natural risks compared with other industries. That is why the purpose of this study is to deal with a more practical approach to project valuation, known as real options analysis in mining industry. This paper provides a case study approach to the copper mining industry using a real options analysis. It shows how companies can minimize investment risks, exercise flexibility in decision making and maximize returns.

  • PDF

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF

Evaluation of Spectral Band Adjustment Factor Applicability for Near Infrared Channel of Sentinel-2A Using Landsat-8 (Landsat-8을 활용한 Sentinel-2A Near Infrared 채널의 Spectral Band Adjustment Factor 적용성 평가)

  • Nayeon Kim;Noh-hun Seong;Daeseong Jung;Suyoung Sim;Jongho Woo;Sungwon Choi;Sungwoo Park;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.363-370
    • /
    • 2023
  • Various earth observation satellites need to provide accurate and high-quality data after launch. To maintain and enhance the quality of satellite data, it is crucial to employ a cross-calibration process that accounts for differences in sensor characteristics, such as the spectral band adjustment factor (SBAF). In this study, we utilized Landsat-8 and Sentinel-2A satellite imagery collected from desert sites in Libya4, Algeria3, and Mauritania2 among pseudo-invariant calibration sites to calculate and apply SBAF, thereby compensating the uncertainties arising from variations in bandwidths. We quantitatively compared the reflectance differences based on the similarity of bandwidths, including Blue, Green, Red, and both the near-infrared (NIR) narrow, and NIR bands of Sentinel-2A. Following the application of SBAF, significant results with reflectance differences of approximately 1% or less were observed for all bands except NIR. In the case of the Sentinel-2A NIR band, it exhibited a significantly larger bandwidth difference compared to the NIR narrow band. However, after applying SBAF, the reflectance difference fell within the acceptable error range (5%) of 1-2%. It indicates that SBAF can be applied even when there is a substantial difference in the bandwidths of the two sensors, particularly in situations where satellite utilization is limited. Therefore, it was determined that SBAF could be applied even when the bandwidth difference between the two sensors is large in a situation where satellite utilization is limited. It is expected to be helpful in research utilizing the quality and continuity of satellite data.