• Title/Summary/Keyword: Progressive reduction

Search Result 153, Processing Time 0.031 seconds

Reduction of Shear Strength of Railway Roadbed Materials with Freezing-thawing Cycle (동결융해 반복에 따른 철도노반재료의 전단강도 변화)

  • Choi, Chan yong;Shin, Eun chul;Kang, Hyoun Hoi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.13-21
    • /
    • 2011
  • In seasonal frozen areas with climatic features, which have a temperature difference in the winter and thawing season, changes of mechanical properties of the soil in the zone could be seen between the freezing and thawing surface. In particular, in soil with many fine particles, a softening of the roadbed usually occurs from frost and thawing actions. The lower bearing capacity is a rapidly progressive the softening of roadbed, and occurred a mud-pumping by repeated loading. In this study, the three kind of sandy soil with contents of fine particles were conducted by directly shear box test with the number of cyclic in freeze-thawing and the water content of soil. Subsequently, the relationship between the shear strength and freeze-thaw cycling time was obtained. The shear strength was decreased with the increase of the freeze-thaw cycling time. A shear stress deterioration of the soil with power function modal is proposal.

Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers

  • Feng, Hongwei;Shen, Daoming;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.711-731
    • /
    • 2020
  • This paper deals with free vibration of FG sandwich annular sector plates on Pasternak elastic foundation with different boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. The influence of carbon nanotubes (CNTs) waviness, aspect ratio, internal pores and graphene platelets (GPLs) on the vibrational behavior of functionally graded nanocomposite sandwich plates is investigated in this research work. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness of upper and bottom layers of the sandwich sectorial plates and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The core of structure is porous and the internal pores and graphene platelets (GPLs) are distributed in the matrix of core either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. A semi-analytic approach composed of 2D-Generalized Differential Quadrature Method (2D-GDQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The new results can be used as benchmark solutions for future researches.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

The protective effect of zinc oxide and selenium oxide nanoparticles on the functional parameters of rat sperm during vitrification

  • Nafiseh Tavakolpoor Saleh;Zohreh Hosseinzadeh;Narges Gholami Banadkuki;Maryam Salehi Novin;Sanaz Saljooghi Zaman;Tohid Moradi Gardeshi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.1
    • /
    • pp.20-27
    • /
    • 2024
  • Objective: While sperm freezing (cryopreservation) is an effective method for preserving fertility, it can potentially harm the structure and function of sperm due to an increase in the production of reactive oxygen species. This study aimed to assess the impact of zinc oxide nanoparticles (ZnONPs) and selenium oxide nanoparticles (SeONPs) on various sperm functional parameters, including motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), acrosome membrane integrity (ACi), and malondialdehyde (MDA) levels. Methods: Semen samples were collected from 20 Albino Wistar rats. These samples were then divided into six groups: fresh, cryopreservation control, and groups supplemented with SeONPs (1, 2, 5 ㎍/mL) and ZnONPs (0.1, 1, 10 ㎍/mL). Results: Statistical analysis revealed that all concentrations of SeONPs increased total motility and progressive reduction of MDA levels compared to the cryopreservation control group (p<0.05). However, supplementation with ZnONPs did not affect these parameters (p>0.05). Conversely, supplements of 1 and 2 ㎍/mL SeONPs and 1 ㎍/mL ZnONPs contributed to the improvement of PMI and ACi (p<0.05). Yet, no significant change was observed in MMP with any concentration of SeONPs and ZnONPs compared to the cryopreservation control group (p>0.05). Conclusion: The findings suggest that optimal concentrations of SeONPs may enhance sperm parameters during the freezing process.

Effects of clomiphene citrate on ovarian function and embryo developmental capacity in the rat (랫드에 있어서 클로미펜 시트레이트가 난소기능 및 수정란 발육성에 미치는 영향)

  • Yun, Young-won;Kwun, Jong-kuk
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.15-24
    • /
    • 1992
  • The effects of CC the ovulatory response, oocyte normality, ovarian steroidogenesis and subsequent embryo developmental potential were examined in PMSG-treated rats. On Days of 25~27 of age, immature female Sprague Dawley rats were treated with three different doses(0.05, 0.1 or 1.0mg /day) of clomiphene citrate or vehicle. The females subsequently received 4IU PMSG on Day 28 and/or 10IU hCG on Day 30, and were killed on Day 31. Some females given 0.1mg CC or vehicle with 4IU PMSG were then mated and killed on Days 2, 3, 4 and 5 of pregnancy. Compared to vehicle(control) group, by increasing the doses of CC, there were a significant decrease in the ovulatory response as judged by both the proportion of rats ovulating and the mean number of oocytes per rat and a marked reduction of ovarian weight. The increasing doses of CC substantially promoted the degeneration(%) of oocytes ovulating in a dose-dependent manner. The CC-mediated inhibitions of the ovulatory response and ovarian weight were oompletely overcome by a subsequent treatment of hCG. Increasing doses of CC resulted in a siginificant elevation of serum estradiol with the decreased levels of progesterone and androgens. The additive treatment with hCG was effective to reduce the elevation of estradiol and to increase the reduction of progesterone produced by high dose(1.0mg) of CC. The preimplantation embryos recovered from 0.1mg CC-treated pregnant rats demonstrated a progressive early loss from Day 3 of pregnancy with a significant increase in the percentage of degeneration during all periods examined, compared to controls. The rate of progressive embryo cleavage in the CC-treated rats were slower than that in controls from Day 3 of pregnancy. Additionally, the percentage of the cleaved embryos recovered from the CC-treated rats remained significantly lower consistently from Day 2 of pregnancy, compared to control regimen. These results demonstrate a possible mechanism of CC-mediated inhibition of ovulatory response in the rats which may include the attenuation or blockade of the endogenous secretion of gonadotropins and also suggest that its detrimental effects observed on oocyte normality and embryonic development may be caused by abnormal follicular steroidogenesis( especially elevated estradiol) preceding fertilization.

  • PDF

Assessment of Technology Based Industrial Wastewater Effluent Limitation and Standards for the Application of Domestic Industries (II) : Analysis Pollution Loads Contribution by Risk Assessment Indicator in Industrial Wastewater (처리기술에 근거한 산업폐수 배출허용기준 국내 적용성 연구(II) : 산업폐수 위해성 지표를 이용한 오염부하 기여도 분석)

  • Kim, Kyeongjin;Kim, Wongi;Jung, Sanggu;Jung, Jinyoung;Kim, Jaehun;Kim, Sanghun;Yeom, Icktae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.191-199
    • /
    • 2010
  • Introduction of Technology-Based Effluent Limitations (TBELs) concepts into Korea requires extensive and through analyses on the expected pollutants reduction effects and the cost factor for the industry side. In addition, the TEBLs should be optimized for the regulatory environments of Korea and be applied in a progressive manner to minimize the undesirable effects. It is also necessary to assess the contribution of each industrial categories's to the pollution of natural water bodies to find the priority of TEBLs application. For these purposes, the pollution loads of various industrial categories were analyzed using risk assessment indicator based on Toxic Weighting Factors (TWFs). First, the TWFs were calculated for the pollutants regulated using the method adopted by USEPA. And the effluent characteristics of the eighty two categories of industry in Korea were investigated. Although the analytical data on the wastewater from different industrial categories are relatively limited, the results from two previous studies were used. The first study, conducted by the National Institute of Environmental Research in 2001~2004, investigated the wastewater characteristics from 255 industrial sources covering the major 20 industrial categories. The second study includes more recent analytical data for the wastewater from 500 industrial sources, covering all the 82 industrial categories. In the result of the pollution loads analyses, the category of 'Synthetic and Chemical manufacture' was found to show the highest raw pollution load. On the other hand the category of 'Ion & Steel manufacture' was found to show the highest effluent pollution loads, which can be considered as the real impacts on natural water streams. The top five categories occupied 62.2% of the total effluent pollution loads. Through the analyses, the relative importances of each industrial categories and the priorities of TEBL-based pollution reduction were determined.

The Reduction of Hydrogen Peroxide in Viable Boar Sperm Cryopreserved in the Presence of Catalase (Catalase 첨가에 따른 돼지 정액 동결 및 융해 후 생존 정자에서 Hydrogen Peroxide의 감소)

  • Kim, Su-Hee;Lee, Young-Jun;Kang, Tae-Woon;Kim, Yong-Jun
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Semen cryopreservation induces the formation of reactive oxygen species (ROS), and the ROS cause sperm damage. We aimed to investigate the effects of the antioxidative enzyme catalase (CAT) on sperm quality and ROS during cryopreservation. Sperm rich fractions collected from five Duroc boars were cryopreserved in freezing extender with (200 or 400 U/mL) or without CAT (control). After thawing, sperm motility, viability, normal morphology, plasma membrane integrity, mitochondrial function and intracellular ROS were evaluated. CAT significantly improved total sperm motility at a concentration of 400 U/mL (P < 0.05), but didn't improve progressive sperm motility, viability, morphological defects, plasma membrane integrity and mitochondrial function in frozen-thawed boar sperm. In evaluation of ROS, CAT had no effect on reduction in ${\cdot}O_2$, but scavenged $H_2O_2$ in viable frozen-thawed boar sperm at concentrations of 200 and 400 U/mL (P < 0.05). In conclusion, CAT was not enough to improve quality of frozen-thawed sperm, but can reduce $H_2O_2$ generation in viable boar sperm during cryopreservation.

A Case Study of Children with Overactive and Aggressive Behaviors using Solution-Focused Brief Counseling - On the basis of phenomenal and psychological analyses - (과잉.공격행동 아동에 대한 해결중심 단기상담의 사계 연구 - 현상학적.심리학적 분석을 중심으로 -)

  • Jeon, Gui-Nam
    • 한국초등상담교육학회:학술대회논문집
    • /
    • 2004.01a
    • /
    • pp.189-204
    • /
    • 2004
  • We can usually found the children who do overactive and aggressive behaviors. They disrupt classroom order and cause other children immense damage. Their teachers exert themselves to control or manage them in class. This may lead to a reduction of precious time for teaching-learning classroom activities. This study has counseled those children doing overactive and aggressive behaviors with solution-focused brief counseling. This study also explores the following problems. First, how does solution-focused brief counseling affect their overactive and aggressive behaviors? Second, what changes do they experience through solution-focused brief counseling? Third, is solution-focused brief counseling useful in elementary schools? To do this study task, four students have been chosen with the help of teachers in the fifth year at B Elementary School in Ansan. The four children scored high in Mi-hyun Han's 'The ratings of the child's behavior problems' and Se-Yong Jeong's 'Life of school and behavior test'. They are all eleven years old and had two interviews before the experiment and five interviews during the experiment. The analysis of the counseling has been interpreted according to the different analytical methods based on the tasks. Solution-focused brief counseling's effect on children doing overactive and aggressive behaviors has been studied by quantity-analysis method, their changes in behaviors by quality analysis method; phenomenal and psychological method and the usefulness of this counseling in school surroundings by the joint of above two methods. The analysis has provided the following results. First, solution-focused brief counseling has been effective in the reduction of behavioral problems for those children doing overactive and aggressive behaviors and the continuation of the counseling has had a positive effect but it has depended on the individual characteristics and the degree of severity in their behaviors. Second, solution-focused brief counseling has lent itself to encouraging children to have egostrength, confidence, and volition in their behavioral changes with a favorable attitude to the counseling. Third, The egostrength formed through counseling has led children to a progressive direction of their behaviors in their school life. The increasing frequency in counseling has caused a decreasing time-period expected for counseling, and a feasibility of counseling with less resistance. In conclusion, solution -focused brief counseling may be a useful means to help children have positive self-esteem and lead a proper school life, leading to be a helpful facilitation for school site facing a deficiency of counseling.

  • PDF

Induction of Disease Resistance by Acibenzolar-S-methyl, the Plant Activator against Gray Mold (Botrytis cinerea) in Tomato Seedlings (저항성 유도물질(acibenzolar-S-methyl)처리에 의한 토마토 잿빛곰팡이병 발병억제)

  • Lee Jung-Sup;Kang Nam-Jun;Seo Sang-Tae;Han Kyoung-Suk;Park Jong-Han;Jang Han-Ik
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • The plant defence activator, Acibenzolar-S-methyl [benzo (1,2,3) thiadiazole-7-carbothioic acid-S-methyl ester, ASM] was assayed on tomato seedlings for its ability to induce resistance against Botrytis cinerea, the causal agent of gray mold in tomato. Pre-treatment of plants with ASM reduced the severity of the disease as well as the growth of the mycelium in plants. In ASM treated plants, reduction in disease severity (up to 55%) was correlated with suppression of mycelia growth (up to 46.5%) during the time course of infection. In plants treated with ASM, activities of peroxidase were determined as markers of resistance. Applications of ASM induced Progressive and significant increase of the enzyme in locally treated tissues. Such responses were expressed earlier and with a much higher magnitude when ASM-treated seedlings were challenged with the pathogen, thus providing support to the concept that a signal produced by the pathogen is essential for triggering enhanced synthesis and accumulation of the enzymes. No such activities were observed in water-treated control plants. Therefore, the slower symptom development and reduction in mycelium growth in ASM treated plants might be due to the increase in activity of oxidative and antioxidative protection systems in plants.