• Title/Summary/Keyword: Programmed death ligand 1 (PD-L1)

Search Result 32, Processing Time 0.027 seconds

Clinical Perspectives to Overcome Acquired Resistance to Anti-Programmed Death-1 and Anti-Programmed Death Ligand-1 Therapy in Non-Small Cell Lung Cancer

  • Lee, Yong Jun;Lee, Jii Bum;Ha, Sang-Jun;Kim, Hye Ryun
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.363-373
    • /
    • 2021
  • Immune checkpoint inhibitors have changed the paradigm of treatment options for non-small cell lung cancer (NSCLC). Monoclonal antibodies targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have gained wide attention for their application, which has been shown to result in prolonged survival. Nevertheless, only a limited subset of patients show partial or complete response to PD-1 therapy, and patients who show a response eventually develop resistance to immunotherapy. This article aims to provide an overview of the mechanisms of acquired resistance to anti-PD-1/PD-L1 therapy from the perspective of tumor cells and the surrounding microenvironment. In addition, we address the potential therapeutic targets and ongoing clinical trials, focusing mainly on NSCLC.

Evaluation of circulating PD-1 and PD-L1 as diagnostic biomarkers in dogs with tumors

  • Song, Doo-Won;Ro, Woong-Bin;Park, Hee-Myung
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.75.1-75.10
    • /
    • 2021
  • Background: Programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1) have important roles in tumor evasion of the immune system. Objectives: This study aimed to assess the diagnostic utility of circulating PD-1 and PD-L1 levels in healthy dogs and dogs with tumors. Methods: Circulating PD-1 and PD-L1 levels in the serum of 71 dogs with tumors were compared with those of 52 healthy dogs by performing enzyme-linked immunosorbent assay (ELISA). Results: The ELISA results revealed higher circulating PD-1 and PD-L1 levels in dogs with tumors (2.9 [2.2-3.7] ng/mL; median [IQR] and 2.4 [1.4-4.4] ng/mL, respectively) than in healthy dogs (2.4 [1.9-3.0] ng/mL; p = 0.012 and 1.4 [0.9-2.1] ng/mL; p < 0.001, respectively). Especially, there was a significant difference in circulating PD-1 levels between healthy dogs and dogs with malignant epithelial tumors (2.4 [1.9-3.0] ng/mL and 3.1 [2.6-4.4] ng/mL, respectively; p < 0.01). In addition, there was a significant difference in circulating PD-L1 levels between healthy dogs and dogs with lymphomas (1.4 [0.9-2.1] ng/mL and 2.7 [1.6-5.8] ng/mL, respectively; p < 0.001). Conclusion: This study indicates that circulating PD-1 and PD-L1 have potential as tumor diagnostic biomarkers in dogs with tumors.

Induction Mechanism of PD-L1 (Programmed Cell Death-ligand 1) in Sepsis (패혈증에서 PD-L1 (Programmed Cell Death-ligand 1)의 발현 증가 기전)

  • Lee, Sang-Min
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.4
    • /
    • pp.343-350
    • /
    • 2008
  • PD-L1 is expressed in a variety of antigen-presenting cells and provides T cell tolerance via ligation with its receptor PD-1 and B7-1 on T cells. Stimulation with lipopolysaccharide (LPS) can increase the level of PD-L1 expression in B cells and macrophages, which suggests that this molecule plays a role in the immunosuppression observed in severe sepsis. The aim of this study was to identify which of the downstream pathways of TLR4 are involved in the up-regulation of PD-L1 by LPS in macrophages. Flow cytometry was used to examine the expression of PD-L1 in RAW 264.7 macrophages stimulated with LPS. The following chemical inhibitors were used to evaluate the role of each pathway: LY294002 for PI3K/Akt, SB202190 for p38 MAPK, and U0126 for MEK. LPS induced the expression of PD-L1 in a time- and dose-dependent manner. Transfection of siRNA for TLR4 suppressed the induction of PD-L1. Pretreatment with LY294002 and SB202190 decreased the level of PD-L1 expression but U0126 did not. Overall, the PI3K/Akt and p38 MAPK pathways are involved in the up-regulation of PD-L1 expression in RAW 264.7 macrophages stimulated with LPS.

An update on immunotherapy with PD-1 and PD-L1 blockade

  • Koh, Sung Ae
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.4
    • /
    • pp.308-317
    • /
    • 2021
  • Cancer is the leading cause of death and is on the rise worldwide. Until 2010, the development of targeted treatment was mainly focused on the growth mechanisms of cancer. Since then, drugs with mechanisms related to tumor immunity, especially immune checkpoint inhibitors, have proven effective, and most pharmaceutical companies are striving to develop related drugs. Programmed cell death-1 and programmed cell death ligand-1 inhibitors have shown great success in various cancer types. They showed durable and sustainable responses and were approved by the U.S. Food and Drug Administration. However, the response to inhibitors showed low percentages of cancer patients; 15% to 20%. Therefore, combination strategies with immunotherapy and conventional treatments were used to overcome the low response rate. Studies on combination therapy have typically reported improvements in the response rate and efficacy in several cancers, including non-small cell lung cancer, small cell lung cancer, breast cancer, and urogenital cancers. The combination of chemotherapy or targeted agents with immunotherapy is one of the leading pathways for cancer treatment.

Current understanding of cancer-intrinsic PD-L1: regulation of expression and its protumoral activity

  • Yadollahi, Pedram;Jeon, You-Kyoung;Ng, Wooi Loon;Choi, Inhak
    • BMB Reports
    • /
    • v.54 no.1
    • /
    • pp.12-20
    • /
    • 2021
  • In the last decade, we have witnessed an unprecedented clinical success in cancer immunotherapies targeting the programmed cell-death ligand 1 (PD-L1) and programmed cell-death 1 (PD-1) pathway. Besides the fact that PD-L1 plays a key role in immune regulation in tumor microenvironment, recently a plethora of reports has suggested a new perspective of non-immunological functions of PD-L1 in the regulation of cancer intrinsic activities including mesenchymal transition, glucose and lipid metabolism, stemness, and autophagy. Here we review the current understanding on the regulation of expression and intrinsic protumoral activity of cancer-intrinsic PD-L1.

Predictions of PD-L1 Expression Based on CT Imaging Features in Lung Squamous Cell Carcinoma (편평세포폐암에서 CT 영상 소견을 이용한 PD-L1 발현 예측)

  • Seong Hee Yeo;Hyun Jung Yoon;Injoong Kim;Yeo Jin Kim;Young Lee;Yoon Ki Cha;So Hyeon Bak
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.2
    • /
    • pp.394-408
    • /
    • 2024
  • Purpose To develop models to predict programmed death ligand 1 (PD-L1) expression in pulmonary squamous cell carcinoma (SCC) using CT. Materials and Methods A total of 97 patients diagnosed with SCC who underwent PD-L1 expression assay were included in this study. We performed a CT analysis of the tumors using pretreatment CT images. Multiple logistic regression models were constructed to predict PD-L1 positivity in the total patient group and in the 40 advanced-stage (≥ stage IIIB) patients. The area under the receiver operating characteristic curve (AUC) was calculated for each model. Results For the total patient group, the AUC of the 'total significant features model' (tumor stage, tumor size, pleural nodularity, and lung metastasis) was 0.652, and that of the 'selected feature model' (pleural nodularity) was 0.556. For advanced-stage patients, the AUC of the 'selected feature model' (tumor size, pleural nodularity, pulmonary oligometastases, and absence of interstitial lung disease) was 0.897. Among these factors, pleural nodularity and pulmonary oligometastases had the highest odds ratios (8.78 and 16.35, respectively). Conclusion Our model could predict PD-L1 expression in patients with lung SCC, and pleural nodularity and pulmonary oligometastases were notable predictive CT features of PD-L1.

Radiotherapy and immune checkpoint blockades: a snapshot in 2016

  • Koo, Taeryool;Kim, In Ah
    • Radiation Oncology Journal
    • /
    • v.34 no.4
    • /
    • pp.250-259
    • /
    • 2016
  • Immune checkpoint blockades including monoclonal antibodies (mAbs) of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) have been emerged as a promising anticancer therapy. Several immune checkpoint blockades have been approved by US Food and Drug Administration (FDA), and have shown notable success in clinical trials for patients with advanced melanoma and non-small cell lung cancer. Radiotherapy is a promising combination partner of immune checkpoint blockades due to its potent pro-immune effect. This review will cover the current issue and the future perspectives for combined with radiotherapy and immune checkpoint blockades based upon the available preclinical and clinical data.

Enhanced Anti-tumor Reactivity of Cytotoxic T Lymphocytes Expressing PD-1 Decoy

  • Jae Hun Shin;Hyung Bae Park;Kyungho Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.2
    • /
    • pp.134-139
    • /
    • 2016
  • Programmed death-1 (PD-1) is a strong negative regulator of T lymphocytes in tumor-microenvironment. By engaging PD-1 ligand (PD-L1) on tumor cells, PD-1 on T cell surface inhibits anti-tumor reactivity of tumor-infiltrating T cells. Systemic blockade of PD-1 function using blocking antibodies has shown significant therapeutic efficacy in clinical trials. However, approximately 10 to 15% of treated patients exhibited serious autoimmune responses due to the activation of self-reactive lymphocytes. To achieve selective activation of tumor-specific T cells, we generated T cells expressing a dominant-negative deletion mutant of PD-1 (PD-1 decoy) via retroviral transduction. PD-1 decoy increased IFN-γ secretion of antigen-specific T cells in response to tumor cells expressing the cognate antigen. Adoptive transfer of PD-1 decoy-expressing T cells into tumor-bearing mice potentiated T cell-mediated tumor regression. Thus, T cell-specific blockade of PD-1 could be a useful strategy for enhancing both efficacy and safety of anti-tumor T cell therapy.

PD-L1 expression correlated with p53 expression in oral squamous cell carcinoma

  • Tojyo, Itaru;Shintani, Yukari;Nakanishi, Takashi;Okamoto, Kenjiro;Hiraishi, Yukihiro;Fujita, Shigeyuki;Enaka, Mayu;Sato, Fuyuki;Muragaki, Yasuteru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.56.1-56.6
    • /
    • 2019
  • Background: Programmed cell death ligand 1 (PD-L1) is an immune checkpoint molecule that attenuates the immune response. PD-L1 contributes to failed antitumor immunity; thereby, blockade of PD-L1 with monoclonal antibody enhances the immune response. Recently, it was reported that PD-L1 was regulated by protein 53 (p53). Besides, cytokeratin 17 (CK17) is thought to be a diagnostic marker of oral squamous cell carcinoma (OSCC). Our aim was to evaluate the correlation between the immunohistochemical expression of PD-L1, p53 and CK17 with clinicopathological characteristics and disease-specific survival in patients with OSCC. Methods: A total of 48 patients with OSCC were included in this study. Immunohistochemical staining was performed to evaluate the correlation among the expressions of PD-L1, p53 and CK17, and furthermore the correlation among various clinicopathological factors, PD-L1, p53 and CK17. Results: The positive rate of p53, CK17, PD-L1 (tumor cells) and PD-L1 (tumor-infiltrating lymphocytes) was 63.2%, 91.7%, 48.9% and 57.1%. A statistically significant correlation between p53 expression and T stage and TNM stage (p = 0.049, p = 0.03, respectively) was observed. Also, a statistically significant correlation between p53 and PD-L1 (TCs) expression (p = 0.0009) was observed. Five-year disease-specific survival rate was not significantly correlated with gender, TNM stage, p53 expression, PD-L1 expression and CK17 expression. Conclusion: The expression of p53 and PD-L1 shows significantly positive correlation in oral squamous cell carcinoma in tumor cells. Also, a significant correlation between p53 expression and T stage and TNM stage was observed. No other significant correlation between PD-L1 staining or CK17 and clinical or pathologic characteristics was identified.

Clinical Characteristics of Korean Patients with Lung Cancer Who Have Programmed Death-Ligand 1 Expression

  • Park, Ha-Young;Oh, In-Jae;Kho, Bo Gun;Kim, Tae-Ok;Shin, Hong-Joon;Park, Cheol Kyu;Kwon, Yong-Soo;Kim, Yu-Il;Lim, Sung-Chul;Kim, Young-Chul;Choi, Yoo-Duk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.3
    • /
    • pp.227-233
    • /
    • 2019
  • Background: Programmed death-ligand 1 (PD-L1), a transmembrane protein, binds to the programmed death-1 (PD-1) receptor, and anti-PD-1 therapy enables immune responses against tumors. This study aimed to assess clinical characteristics of PD-L1 expression using immunohistochemistry among Korean patients with lung cancer. Methods: We retrospectively reviewed the data of patients with pathologically proven lung cancer from a single institution. PD-L1 expression determined by Tumor Proportion Score (TPS) was detected using 22C3 pharmDx (Agilent Technologies) and SP263 (Ventana Medical Systems) assays. Results: From July 2016 to July 2017, 267 patients were enrolled. The main histologic type was adenocarcinoma (69.3%). Most participants were smokers (67.4%) and had clinical stage IV disease (60.7%). In total, 116 (42%) and 58 (21%) patients had TPS ${\geq}1%$ and ${\geq}50%$, respectively. The patients were significantly older in TPS ${\geq}1%$ group than in TPS <1% group ($64.83{\pm}9.38years$ vs. $61.73{\pm}10.78years$, p=0.014), not in TPS ${\geq}50%$ cutoff value ($64.69{\pm}9.39$ vs. $62.36{\pm}10.51$, p=0.178). Regarding histologic grade, higher proportions of poorly differentiated tumor were observed in the TPS ${\geq}1%$ (40.8% vs. 25.8%, p=0.020) and TPS ${\geq}50%$ groups (53.2% vs. 27.2%, p=0.004). Among 34 patients examined with 22C3 and SP263 assays, 27 had positive results in both assays, with a cutoff of TPS ${\geq}1%$ (r=0.826; 95% confidence interval, 0.736-0.916). Conclusion: PD-L1 expression, defined as TPS ${\geq}1%$, was related to older age and poorly differentiated histology. There was a similar distribution of PD-L1 expression in both 22C3 and SP263 results.