Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0044

Clinical Perspectives to Overcome Acquired Resistance to Anti-Programmed Death-1 and Anti-Programmed Death Ligand-1 Therapy in Non-Small Cell Lung Cancer  

Lee, Yong Jun (Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine)
Lee, Jii Bum (Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine)
Ha, Sang-Jun (Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University)
Kim, Hye Ryun (Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine)
Abstract
Immune checkpoint inhibitors have changed the paradigm of treatment options for non-small cell lung cancer (NSCLC). Monoclonal antibodies targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have gained wide attention for their application, which has been shown to result in prolonged survival. Nevertheless, only a limited subset of patients show partial or complete response to PD-1 therapy, and patients who show a response eventually develop resistance to immunotherapy. This article aims to provide an overview of the mechanisms of acquired resistance to anti-PD-1/PD-L1 therapy from the perspective of tumor cells and the surrounding microenvironment. In addition, we address the potential therapeutic targets and ongoing clinical trials, focusing mainly on NSCLC.
Keywords
acquired resistance; immune checkpoint inhibitors; non-small cell lung cancer; programmed death-1; programmed death ligand-1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zingg, D., Arenas-Ramirez, N., Sahin, D., Rosalia, R.A., Antunes, A.T., Haeusel, J., Sommer, L., and Boyman, O. (2017). The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20, 854-867.   DOI
2 Genova, C., Boccardo, S., Mora, M., Rijavec, E., Biello, F., Rossi, G., Tagliamento, M., Dal Bello, M.G., Coco, S., Alama, A., et al. (2019). Correlation between B7-H4 and survival of non-small-cell lung cancer patients treated with nivolumab. J. Clin. Med. 8, 1566.   DOI
3 Hou, A., Hou, K., Huang, Q., Lei, Y., and Chen, W. (2020). Targeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitors. Front. Immunol. 11, 783.   DOI
4 Mazzone, R., Zwergel, C., Mai, A., and Valente, S. (2017). Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy. Clin. Epigenetics 9, 59.   DOI
5 Mahoney, K.M., Rennert, P.D., and Freeman, G.J. (2015). Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561-584.   DOI
6 Manguso, R.T., Pope, H.W., Zimmer, M.D., Brown, F.D., Yates, K.B., Miller, B.C., Collins, N.B., Bi, K., LaFleur, M.W., Juneja, V.R., et al. (2017). In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413-418.   DOI
7 Mariathasan, S., Turley, S.J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., Kadel, E.E., III, Koeppen, H., Astarita, J.L., Cubas, R., et al. (2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544-548.   DOI
8 Alfaro, C., Teijeira, A., Onate, C., Perez, G., Sanmamed, M.F., Andueza, M.P., Alignani, D., Labiano, S., Azpilikueta, A., Rodriguez-Paulete, A., et al. (2016). Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin. Cancer Res. 22, 3924-3936.   DOI
9 Meder, L., Schuldt, P., Thelen, M., Schmitt, A., Dietlein, F., Klein, S., Borchmann, S., Wennhold, K., Vlasic, I., Oberbeck, S., et al. (2018). Combined VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer. Cancer Res. 78, 4270-4281.   DOI
10 Abiko, K., Matsumura, N., Hamanishi, J., Horikawa, N., Murakami, R., Yamaguchi, K., Yoshioka, Y., Baba, T., Konishi, I., and Mandai, M. (2015). IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br. J. Cancer 112, 1501-1509.   DOI
11 Baxter, E., Windloch, K., Gannon, F., and Lee, J.S. (2014). Epigenetic regulation in cancer progression. Cell Biosci. 4, 45.   DOI
12 Rodriguez-Abreu, D., Johnson, M.L., Hussein, M.A., Cobo, M., Patel, A.J., Secen, N.M., Lee, K.H., Massuti, B., Hiret, S., Yang, J.C.H., et al. (2020). Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J. Clin. Oncol. 38(15 Suppl), 9503.   DOI
13 Thommen, D.S., Schreiner, J., Muller, P., Herzig, P., Roller, A., Belousov, A., Umana, P., Pisa, P., Klein, C., Bacac, M., et al. (2015). Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol. Res. 3, 1344-1355.   DOI
14 Xu, L.J., Ma, Q., Zhu, J., Li, J., Xue, B.X., Gao, J., Sun, C.Y., Zang, Y.C., Zhou, Y.B., Yang, D.R., et al. (2018). Combined inhibition of JAK1, 2/Stat3-PD-L1 signaling pathway suppresses the immune escape of castration-resistant prostate cancer to NK cells in hypoxia. Mol. Med. Rep. 17, 8111-8120.
15 Arlauckas, S.P., Garris, C.S., Kohler, R.H., Kitaoka, M., Cuccarese, M.F., Yang, K.S., Miller, M.A., Carlson, J.C., Freeman, G.J., Anthony, R.M., et al. (2017). In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 9, eaal3604.   DOI
16 Bach, E.A., Aguet, M., and Schreiber, R.D. (1997). The IFNγ receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15, 563-591.   DOI
17 Chanmee, T., Ontong, P., Konno, K., and Itano, N. (2014). Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6, 1670-1690.   DOI
18 Arenas-Ramirez, N., Sahin, D., and Boyman, O. (2018). Epigenetic mechanisms of tumor resistance to immunotherapy. Cell. Mol. Life Sci. 75, 4163-4176.   DOI
19 Meyer, C., Cagnon, L., Costa-Nunes, C.M., Baumgaertner, P., Montandon, N., Leyvraz, L., Michielin, O., Romano, E., and Speiser, D.E. (2014). Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol. Immunother. 63, 247-257.   DOI
20 Zhu, Y., Knolhoff, B.L., Meyer, M.A., Nywening, T.M., West, B.L., Luo, J., Wang-Gillam, A., Goedegebuure, S.P., Linehan, D.C., and DeNardo, D.G. (2014). CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057-5069.   DOI
21 Miao, D., Margolis, C.A., Gao, W., Voss, M.H., Li, W., Martini, D.J., Norton, C., Bosse, D., Wankowicz, S.M., Cullen, D., et al. (2018). Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801-806.   DOI
22 Neel, J.C., Humbert, L., and Lebrun, J.J. (2012). The dual role of TGFβ in human cancer: from tumor suppression to cancer metastasis. ISRN Mol. Biol. 2012, 381428.   DOI
23 Pereira, C., Gimenez-Xavier, P., Pros, E., Pajares, M.J., Moro, M., Gomez, A., Navarro, A., Condom, E., Moran, S., Gomez-Lopez, G., et al. (2017). Genomic profiling of patient-derived xenografts for lung cancer identifies B2M inactivation impairing immunorecognition. Clin. Cancer Res. 23, 3203-3213.   DOI
24 Bagchi, S., Yuan, R., and Engleman, E.G. (2021). Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223-249.   DOI
25 Pauken, K.E., Sammons, M.A., Odorizzi, P.M., Manne, S., Godec, J., Khan, O., Drake, A.M., Chen, Z., Sen, D.R., Kurachi, M., et al. (2016). Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160-1165.   DOI
26 Peng, W., Chen, J.Q., Liu, C., Malu, S., Creasy, C., Tetzlaff, M.T., Xu, C., McKenzie, J.A., Zhang, C., Liang, X., et al. (2016). Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202-216.   DOI
27 Fong, L., Forde, P.M., Powderly, J.D., Goldman, J.W., Nemunaitis, J.J., Luke, J.J., Hellmann, M.D., Kummar, S., Doebele, R.C., Mahadevan, D., et al. (2017). Safety and clinical activity of adenosine A2a receptor (A2aR) antagonist, CPI-444, in anti-PD1/PDL1 treatment-refractory renal cell (RCC) and non-small cell lung cancer (NSCLC) patients. J. Clin. Oncol. 35(15 Suppl), 3004.
28 Galon, J. and Bruni, D. (2019). Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197-218.   DOI
29 Garcia-Diaz, A., Shin, D.S., Moreno, B.H., Saco, J., Escuin-Ordinas, H., Rodriguez, G.A., Zaretsky, J.M., Sun, L., Hugo, W., Wang, X., et al. (2017). Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189-1201.   DOI
30 Ettinger, D.S., Wood, D.E., Aggarwal, C., Aisner, D.L., Akerley, W., Bauman, J.R., Bharat, A., Bruno, D.S., Chang, J.Y., Chirieac, L.R., et al. (2019). NCCN guidelines insights: non-small cell lung cancer, version 1.2020: featured updates to the NCCN guidelines. J. Natl. Compr. Canc. Netw. 17, 1464-1472.   DOI
31 Pourmir, I., Gazeau, B., de Saint Basile, H., and Fabre, E. (2020). Biomarkers of resistance to immune checkpoint inhibitors in non-small-cell lung cancer: myth or reality? Cancer Drug Resist. 3, 276-286.
32 Pan, D., Kobayashi, A., Jiang, P., Ferrari de Andrade, L., Tay, R.E., Luoma, A.M., Tsoucas, D., Qiu, X., Lim, K., Rao, P., et al. (2018). A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770-775.   DOI
33 Ribas, A., Shin, D.S., Zaretsky, J., Frederiksen, J., Cornish, A., Avramis, E., Seja, E., Kivork, C., Siebert, J., Kaplan-Lefko, P., et al. (2016). PD-1 blockade expands intratumoral memory T cells. Cancer Immunol. Res. 4, 194-203.   DOI
34 Gettinger, S., Choi, J., Hastings, K., Truini, A., Datar, I., Sowell, R., Wurtz, A., Dong, W., Cai, G., Melnick, M.A., et al. (2017). Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420-1435.   DOI
35 Hanks, B.A., Holtzhausen, A., Evans, K., Heid, M., and Blobe, G.C. (2014). Combinatorial TGF-β signaling blockade and anti-CTLA-4 antibody immunotherapy in a murine BRAFV600E-PTEN-/- transgenic model of melanoma. J. Clin. Oncol. 32(15 Suppl), 3011.   DOI
36 Hellmann, M.D., Friedman, C.F., and Wolchok, J.D. (2016). Combinatorial cancer immunotherapies. Adv. Immunol. 130, 251-277.   DOI
37 Mok, T.S.K., Wu, Y.L., Kudaba, I., Kowalski, D.M., Cho, B.C., Turna, H.Z., Castro, G., Jr., Srimuninnimit, V., Laktionov, K.K., Bondarenko, I., et al. (2019). Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819-1830.   DOI
38 Platten, M., von Knebel Doeberitz, N., Oezen, I., Wick, W., and Ochs, K. (2015). Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front. Immunol. 5, 673.   DOI
39 Remon, J., Passiglia, F., Ahn, M.J., Barlesi, F., Forde, P.M., Garon, E.B., Gettinger, S., Goldberg, S.B., Herbst, R.S., Horn, L., et al. (2020). Immune checkpoint inhibitors in thoracic malignancies: review of the existing evidence by an IASLC expert panel and recommendations. J. Thorac. Oncol. 15, 914-947.   DOI
40 Ren, D., Hua, Y., Yu, B., Ye, X., He, Z., Li, C., Wang, J., Mo, Y., Wei, X., Chen, Y., et al. (2020). Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol. Cancer 19, 19.   DOI
41 Sharma, P., Hu-Lieskovan, S., Wargo, J.A., and Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707-723.   DOI
42 Chauvin, J.M., Pagliano, O., Fourcade, J., Sun, Z., Wang, H., Sander, C., Kirkwood, J.M., Chen, T.H., Maurer, M., Korman, A.J., et al. (2015). TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J. Clin. Invest. 125, 2046-2058.   DOI
43 Chen, P.L., Roh, W., Reuben, A., Cooper, Z.A., Spencer, C.N., Prieto, P.A., Miller, J.P., Bassett, R.L., Gopalakrishnan, V., Wani, K., et al. (2016). Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827-837.   DOI
44 Kim, D., Lee, Y.S., Kim, D.H., and Bae, S.C. (2020). Lung cancer staging and associated genetic and epigenetic events. Mol. Cells 43, 1-9.   DOI
45 Ricciuti, B., Leonardi, G.C., Puccetti, P., Fallarino, F., Bianconi, V., Sahebkar, A., Baglivo, S., Chiari, R., and Pirro, M. (2019). Targeting indoleamine-2, 3-dioxygenase in cancer: scientific rationale and clinical evidence. Pharmacol. Ther. 196, 105-116.   DOI
46 Saleh, R. and Elkord, E. (2019). Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett. 457, 168-179.   DOI
47 Shin, D.S., Zaretsky, J.M., Escuin-Ordinas, H., Garcia-Diaz, A., Hu-Lieskovan, S., Kalbasi, A., Grasso, C.S., Hugo, W., Sandoval, S., Torrejon, D.Y., et al. (2017). Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188-201.   DOI
48 Socinski, M.A., Jotte, R.M., Cappuzzo, F., Orlandi, F., Stroyakovskiy, D., Nogami, N., Rodriguez-Abreu, D., Moro-Sibilot, D., Thomas, C.A., Barlesi, F., et al. (2018). Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288-2301.   DOI
49 Hu-Lieskovan, S. and Ribas, A. (2017). New combination strategies using PD-1/L1 checkpoint inhibitors as a backbone. Cancer J. 23, 10-22.   DOI
50 Koyama, S., Akbay, E.A., Li, Y.Y., Herter-Sprie, G.S., Buczkowski, K.A., Richards, W.G., Gandhi, L., Redig, A.J., Rodig, S.J., Asahina, H., et al. (2016). Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501.   DOI
51 Jenkins, R.W., Barbie, D.A., and Flaherty, K.T. (2018). Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9-16.   DOI
52 Kanwal, R. and Gupta, S. (2012). Epigenetic modifications in cancer. Clin. Genet. 81, 303-311.   DOI
53 Young, A., Ngiow, S.F., Gao, Y., Patch, A.M., Barkauskas, D.S., Messaoudene, M., Lin, G., Coudert, J.D., Stannard, K.A., Zitvogel, L., et al. (2018). A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 78, 1003-1016.   DOI
54 Su, T., Zhang, Y., Valerie, K., Wang, X.Y., Lin, S., and Zhu, G. (2019). STING activation in cancer immunotherapy. Theranostics 9, 7759-7771.   DOI
55 Spranger, S., Koblish, H.K., Horton, B., Scherle, P.A., Newton, R., and Gajewski, T.F. (2014). Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. J. Immunother. Cancer 2, 3.   DOI
56 Stanley, E.R. and Chitu, V. (2014). CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol. 6, a021857.   DOI
57 Steven, A., Fisher, S.A., and Robinson, B.W. (2016). Immunotherapy for lung cancer. Respirology 21, 821-833.   DOI
58 Sucker, A., Zhao, F., Pieper, N., Heeke, C., Maltaner, R., Stadtler, N., Real, B., Bielefeld, N., Howe, S., Weide, B., et al. (2017). Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat. Commun. 8, 15440.   DOI
59 Sucker, A., Zhao, F., Real, B., Heeke, C., Bielefeld, N., Maβen, S., Horn, S., Moll, I., Maltaner, R., Horn, P.A., et al. (2014). Genetic evolution of T-cell resistance in the course of melanoma progression. Clin. Cancer Res. 20, 6593-6604.   DOI
60 Taube, J.M., Anders, R.A., Young, G.D., Xu, H., Sharma, R., McMiller, T.L., Chen, S., Klein, A.P., Pardoll, D.M., Topalian, S.L., et al. (2012). Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4, 127ra37.   DOI
61 Toor, S.M., Nair, V.S., Decock, J., and Elkord, E. (2020). Immune checkpoints in the tumor microenvironment. Semin. Cancer Biol. 65, 1-12.   DOI
62 Toso, A., Revandkar, A., Di Mitri, D., Guccini, I., Proietti, M., Sarti, M., Pinton, S., Zhang, J., Kalathur, M., Civenni, G., et al. (2014). Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75-89.   DOI
63 Vanpouille-Box, C., Diamond, J.M., Pilones, K.A., Zavadil, J., Babb, J.S., Formenti, S.C., Barcellos-Hoff, M.H., and Demaria, S. (2015). TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75, 2232-2242.   DOI
64 Vijayan, D., Young, A., Teng, M.W., and Smyth, M.J. (2017). Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 709-724.   DOI
65 Voron, T., Colussi, O., Marcheteau, E., Pernot, S., Nizard, M., Pointet, A.L., Latreche, S., Bergaya, S., Benhamouda, N., Tanchot, C., et al. (2015). VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139-148.   DOI
66 Wang, F., Wang, S., and Zhou, Q. (2020). The resistance mechanisms of lung cancer immunotherapy. Front. Oncol. 10, 568059.   DOI
67 Yamaguchi, H. and Hung, M.C. (2014). Regulation and role of EZH2 in cancer. Cancer Res. Treat. 46, 209-222.   DOI
68 Yuen, K.C., Liu, L.F., Gupta, V., Madireddi, S., Keerthivasan, S., Li, C., Rishipathak, D., Williams, P., Kadel, E.E., 3rd, Koeppen, H., et al. (2020). High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693-698.   DOI
69 Zaretsky, J.M., Garcia-Diaz, A., Shin, D.S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D.Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819-829.   DOI
70 Topalian, S.L., Drake, C.G., and Pardoll, D.M. (2015). Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450-461.   DOI
71 Zang, X., Loke, P., Kim, J., Murphy, K., Waitz, R., and Allison, J.P. (2003). B7x: a widely expressed B7 family member that inhibits t cell activation. Proc. Natl. Acad. Sci. U. S. A. 100, 10388-10392.   DOI
72 Zauderer, M.G., Szlosarek, P.W., Le Moulec, S., Popat, S., Taylor, P., Planchard, D., Scherpereel, A., Jahan, T.M., Koczywas, M., Forster, M., et al. (2020). Safety and efficacy of tazemetostat, an enhancer of zeste-homolog 2 inhibitor, in patients with relapsed or refractory malignant mesothelioma. J. Clin. Oncol. 38(15 Suppl), 9058.   DOI
73 Zhang, H., Conrad, D.M., Butler, J.J., Zhao, C., Blay, J., and Hoskin, D.W. (2004). Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: role of cyclic adenosine 3', 5'-monophosphate and phosphatases. J. Immunol. 173, 932-944.   DOI
74 Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133, 775-787.   DOI
75 Ashizawa, T., Iizuka, A., Maeda, C., Tanaka, E., Kondou, R., Miyata, H., Sugino, T., Kawata, T., Deguchi, S., Mitsuya, K., et al. (2019). Impact of combination therapy with anti-PD-1 blockade and a STAT3 inhibitor on the tumor-infiltrating lymphocyte status. Immunol. Lett. 216, 43-50.   DOI