• 제목/요약/키워드: Production-based Process Technology

검색결과 1,073건 처리시간 0.028초

Comparison of the Characteristics of Green Screen and LED Wall in Virtual Production System

  • Shan, Xinyi;Chung, Jeanhun
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.64-70
    • /
    • 2022
  • In recent years, with the continuous innovation and upgrading of engine software, the real-time rendering technology in film and television has been continuously improved, and the virtual production technology has also developed rapidly. This paper introduces the green screen often used in traditional film production and a virtual production technology based on light-emitting-diode background wall that was proposed and implemented last year. We analyzed the two production methods of virtual production and compared their characteristics. Based on these results, we can better understand the differences and respective advantages of the two production methods. And we also can according to the production budget, production cycle and the creative and technical capabilities of the team make better choices during the production process. We believe virtual production technology will be production in the future to provide a more solid technical guarantee for the development of the film industry, and this work will pave the way for further research on virtual production technology.

A Study on CNN based Production Yield Prediction Algorithm for Increasing Process Efficiency of Biogas Plant

  • Shin, Jaekwon;Kim, Jintae;Lee, Beomhee;Lee, Junghoon;Lee, Jisung;Jeong, Seongyeob;Chang, Soonwoong
    • International journal of advanced smart convergence
    • /
    • 제7권1호
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, as the demand for limited resources continues to rise and problems of resource depletion rise worldwide, the importance of renewable energy is gradually increasing. In order to solve these problems, various methods such as energy conservation and alternative energy development have been suggested, and biogas, which can utilize the gas produced from biomass as fuel, is also receiving attention as the next generation of innovative renewable energy. New and renewable energy using biogas is an energy production method that is expected to be possible in large scale because it can supply energy with high efficiency in compliance with energy supply method of recycling conventional resources. In order to more efficiently produce and manage these biogas, a biogas plant has emerged. In recent years, a large number of biogas plants have been installed and operated in various locations. Organic wastes corresponding to biogas production resources in a biogas plant exist in a wide variety of types, and each of the incoming raw materials is processed in different processes. Because such a process is required, the case where the biogas plant process is inefficiently operated is continuously occurring, and the economic cost consumed for the operation of the biogas production relative to the generated biogas production is further increased. In order to solve such problems, various attempts such as process analysis and feedback based on the feedstock have been continued but it is a passive method and very limited to operate a medium/large scale biogas plant. In this paper, we propose "CNN-based production yield prediction algorithm for increasing process efficiency of biogas plant" for efficient operation of biogas plant process. Based on CNN-based production yield forecasting, which is one of the deep-leaning technologies, it enables mechanical analysis of the process operation process and provides a solution for optimal process operation due to process-related accumulated data analyzed by the automated process.

반도체 생산라인에서 SA를 이용한 최적 WIP수준과 버퍼사이즈 결정 (Determining Optimal WIP Level and Buffer Size Using Simulated Annealing in Semiconductor Production Line)

  • 정재환;장세인;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.57-64
    • /
    • 2021
  • The domestic semiconductor industry can produce various products that will satisfy customer needs by diversifying assembly parts and increasing compatibility between them. It is necessary to improve the production line as a method to reduce the work-in-process inventory (WIP) in the assembly line, the idle time of the worker, and the idle time of the process. The improvement of the production line is to balance the capabilities of each process as a whole, and to determine the timing of product input or the order of the work process so that the time required between each process is balanced. The purpose of this study is to find the optimal WIP and buffer size through SA (Simulated Annealing) that minimizes lead time while matching the number of two parts in a parallel assembly line with bottleneck process. The WIP level and buffer size obtained by the SA algorithm were applied to the CONWIP and DBR systems, which are the existing production systems, and the simulation was performed by applying them to the new hybrid production system. Here, the Hybrid method is a combination of CONWIP and DBR methods, and it is a production system created by setting new rules. As a result of the Simulation, the result values were derived based on three criteria: lead time, production volume, and work-in-process inventory. Finally, the effect of the hybrid production method was verified through comparative analysis of the result values.

Programming of adaptive repair process chains using repair features and function blocks

  • Spocker, Gunter;Schreiner, Thorsten;Huwer, Tobias;Arntz, Kristian
    • Journal of Computational Design and Engineering
    • /
    • 제3권1호
    • /
    • pp.53-62
    • /
    • 2016
  • The current trends of product customization and repair of high value parts with individual defects demand automation and a high degree of flexibility of the involved manufacturing process chains. To determine the corresponding requirements this paper gives an overview of manufacturing process chains by distinguishing between horizontal and vertical process chains. The established way of modeling and programming processes with CAx systems and existing approaches is shown. Furthermore, the different types of possible adaptions of a manufacturing process chain are shown and considered as a cascaded control loop. Following this it is discussed which key requirements of repair process chains are unresolved by existing approaches. To overcome the deficits this paper introduces repair features which comprise the idea of geometric features and defines analytical auxiliary geometries based on the measurement input data. This meets challenges normally caused by working directly on reconstructed geometries in the form of triangulated surfaces which are prone to artifacts. Embedded into function blocks, this allows the use of traditional approaches for manufacturing process chains to be applied to adaptive repair process chains.

Comprehensive evaluation of cleaner production in thermal power plants based on an improved least squares support vector machine model

  • Ye, Minquan;Sun, Jingyi;Huang, Shenhai
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.559-565
    • /
    • 2019
  • In order to alleviate the environmental pressure caused by production process of thermal power plants, the application of cleaner production is imperative. To estimate the implementation effects of cleaner production in thermal plants and optimize the strategy duly, it is of great significance to take a comprehensive evaluation for sustainable development. In this paper, a hybrid model that integrated the analytic hierarchy process (AHP) with least squares support vector machine (LSSVM) algorithm optimized by grid search (GS) algorithm is proposed. Based on the establishment of the evaluation index system, AHP is employed to pre-process the data and GS is introduced to optimize the parameters in LSSVM, which can avoid the randomness and inaccuracy of parameters' setting. The results demonstrate that the combined model is able to be employed in the comprehensive evaluation of the cleaner production in the thermal power plants.

A Process Planning System for Machining of Dies for Auto-Body Production-Operation Planning and NC Code Post-Processing

  • Dongmok Sheen;Lee, Chang-Ho;Noh, Sang-Do;Lee, Kiwoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.69-78
    • /
    • 2001
  • This paper presents a process and operation planning system and an NC code post-processor for effective machining of press dies for production of cars. Based on the machining feature, major parts of press dies are categorized into 15 groups and a standard process plan is defined for each group. The standard process plan consists of a series of processes where a process is defined as a group of operations that can be done with one setup. Details such as cutting tools, cutting conditions, and tool paths are decided at the operation planning stage. At the final stage of process and operation planning, the NC code post-processor adjusts feedrates along the tool path to reduce machining time while maintaining the quality. The adjustment rule is selected based on the machining load estimated by virtual machining.

  • PDF

SI 수소생산 공정 Section 3 열교환기 설계 (Design of Heat Exchanger for Section 3 of SI Hydrogen Production Process)

  • 김기섭;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제7권1호
    • /
    • pp.19-22
    • /
    • 2017
  • SI process is one of the most advanced thermochemical water splitting cycles enabling mass production of hydrogen without emitting carbon dioxide when coupled to nuclear heat energy. The highest temperature (close to $1000^{\circ}C$) required in SI process is well matched with the outlet temperature of a coolant circulating a high-temperature gas-cooled reactor at around $950^{\circ}C$. In Section 3, some heat exchangers are included to recover heats from process flows at high temperature. In this work, we designed a heat exchanger based on the $1Nm^3/hr$ $H_2$ production capacity using commercial tools for chemical process design.

다단계 생산공정에 대한 공리모델 (An Axiomatic model of the multi-stage production process)

  • 안웅
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1993년도 추계학술대회발표논문집; 서강대학교, 서울; 25 Sep. 1993
    • /
    • pp.175-184
    • /
    • 1993
  • Modeling the production process is a necessary and essential aspect of the production planning. This paper introduces a theoretical model of the multi-stage production process. A multi-stage production process is regarded as a network of interrelated production activities which use system exogenous inputs of goods in production and the intermediate products transfers between activities to produce final products. Our model is characterized by (1) a few of the production-related assumptions and (2) two types of elements "goods and activities" that are represented in terms of the network terminology. This model is different from the another multi-stage production models, so-called production network models in relation to the production-theoretical concept. It is not based on the concept of the production correspondence and the activity production functions, but the technology model of Koopmans. Koopmans.

  • PDF

Learning Curve를 이용한 G.T형 생산성향상 모델 구축 (The Construction of Productivity Improvement Model with Group Technology Style through the Utilization of Learning curve)

  • 윤상원;신용백
    • 산업경영시스템학회지
    • /
    • 제15권26호
    • /
    • pp.77-84
    • /
    • 1992
  • This paper constructs Croup Technology process-based learning curve model adjusted to a Group Technology environment which accounts for shared learning that occurs when multiple products utilize some of the same process steps. Through this constructed model, the estimated times and productivity of labor calculated by the Group Technology process-based learning curve model are compared with those generated by employing product-based 1 earning curve model. For sensitivity analysis of the model, the impact of learning rate and the ordered production quantity on the ratio differences between Group Technology process-based learning curve model and product-based learning curve model are examined. These results indicate the critical importance of employing Group Technology process-based learning curve model when a process spans multiple products.

  • PDF

구성적 음악 창작: 컴퓨터 기반 전자적 음악 프로덕션 상에서 샘플링의 과정과 효과 (Constructive music creation: the process and effectiveness of sampling in computer-based electronic music production)

  • 한진승
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.127-134
    • /
    • 2009
  • 컴퓨터에서 생성되는 전자적 음악의 심미적 가치에 관한 논란 속에서도 지난 십년간 음악 기술의 발전은 음악 작곡에 있어 가상 전자 악기와 샘플러 사용의 확산을 가져왔다. 컴퓨터 기반 음악 제작 플랫폼은 현재 일부 작곡가들에게는 표준이 되었을 뿐만 아니라 중요한 음악 저작 도구가 되었다. 컴퓨터 기반 음악 제작에서의 샘플링을 활용한 작곡 과정에 있어 두 가지 중요한 부분이 있는데, 그것은 이미 녹음된 오디오 샘플을 담고 있는 상용화된 샘플 라이브러리와 이 샘플을 처리하는 음악 프로덕션 소프트웨어이다. 이 연구는 컴퓨터 음악 프로덕션 소프트웨어 상에서의 주요한 샘플링 기능을 활용한 재구성적 음악 작곡 과정과 효과를 조사하여 분석하는 것을 목적으로 한다. 이 연구의 주안점은 오디오 샘플링 정의, 음악 작곡 과정에서의 샘플링 적용 방식, 음악 프로덕션 소프트웨어의 어떤 기능이 음악적 표현에 특정하게 유용한가에 초점이 맞추어져 있으며, 전자 또는 어쿠스틱 음악인들의 음악 창작 요구에 부응하는 연구 결과가 될 것으로 기대한다.

  • PDF