• Title/Summary/Keyword: Production-Inventory Systems

Search Result 155, Processing Time 0.021 seconds

The Impact of Nonconforming Items on (s, S) Inventory Model with Customer Order Reservation and Cancellation

  • Takemoto, Yasuhiko;Arizono, Ikuo
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.2
    • /
    • pp.72-79
    • /
    • 2009
  • The ultimate goal of inventory management is to decide the timing and the quantity of ordering in response to uncertain demands. Recently, some researchers have focused upon an impact of distortions in the information, e.g., customer order cancellation, on an economical inventory policy. The customer order cancellation is considered a kind of distortions in demands, because a demand that is eventually cancelled is equivalent to a phony demand. Also, there are some additional distortions in the inventory information. For instance, the procurement of suppliers may include some nonconforming items as a result of imperfect production and inspection by the suppliers, and/or damage in transit. The nonconforming item should be considered a kind of distortions in the inventory information, because the nonconforming item is equivalent to a phony stock. In this article, we consider an inventory model under the situation that customers can cancel their orders and the procurement of suppliers may include some nonconforming items. Then, we introduce the customer order reservation into the inventory model for the purpose of avoiding the costly backlogs, because the customer order reservation gives retailers a period to fulfill customer's requests. We formulate a periodic review (s, S) inventory model and investigate the economical operation under the situation mentioned above. Further, through the sensitivity analysis, we show the impact of these distortions and the effect of the customer order reservation on the inventory policy.

Optimal Design of Process-Inventory Network Considering Backordering Costs (역주문을 고려한 공정-저장조 망구조의 최적설계)

  • Yi, Gyeongbeom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.750-755
    • /
    • 2014
  • Product shortage which causes backordering and/or lost sales cost is very popular in chemical industries, especially in commodity polymer business. This study deals with backordering cost in the supply chain optimization model under the framework of process-inventory network. Classical economic order quantity model with backordering cost suggested optimal time delay and lot size of the final product delivery. Backordering can be compensated by advancing production/transportation of it or purchasing substitute product from third party as well as product delivery delay in supply chain network. Optimal solutions considering all means to recover shortage are more complicated than the classical one. We found three different solutions depending on parametric range and variable bounds. Optimal capacity of production/transportation processes associated with the product in backordering can be different from that when the product is not in backordering. The product shipping cycle time computed in this study was smaller than that optimized by the classical EOQ model.

Optimal Design Of Batch-Storage Network with Financial Transactions and Cash Flows (현금흐름을 포함하는 회분식 공정-저장조 망구조의 최적설계)

  • ;Lee, Euy-Soo;Lee, In-Beom;Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.956-962
    • /
    • 2005
  • This paper presents an integrated analysis of production and financing decisions. We assume that a cash storage unit is installed to manage the cash flows related with production activities such as raw material procurement, process operating setup, Inventory holding cost and finished product sales. Temporarily financial investments are allowed for more profit. The production plant is modeled by the Batch-Storage Network with Recycle Streams in Yi and Reklaitis (2003). The objective function of the optimization is minimizing the opportunity costs of annualized capital investment and cash/material inventory while maximizing stockholder's benefit. No depletion of all the material and cash storage units is major constraints of the optimization. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the cash and material inventory holdups. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two subproblems and analytical lot sizing equations under a mild assumption about the cash flow pattern of stockholder's dividend. The first subproblem is a separable concave minimization network flow problem whose solution yields the average material flow rates through the networks. The second subproblem determines the decisions about financial Investment. Finally, production and financial transaction lot sizes and startup times can be determined by analytical expressions as far as the average flow rates are calculated. The optimal production lot and storage sizes considering financial factors are smaller than those without such consideration. An illustrative example is presented to demonstrate the results obtainable using this approach.

CHAOS IN PRODUCTION PLANNING

  • Haghighirad, Farzad;Makui, Ahmad;Ashtiani, Behzad
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.739-750
    • /
    • 2008
  • A phenomenon which is seen in some of the manufacturing systems and production planning is chaos and the butterfly effect. The butterfly effect points out that in case of the presence of nonlinear relations in system and incorrect estimation of initial values of variables, the error in the estimates of system state will be intensified, and after a while there will be a large distance between available state of system and reality. Using mathematical means and computer simulation, we have tried to demonstrate that in a production system the numerical combination of Cycle Time (CT), Adjustment Time between existing and desired Work In Progress (WIP), and Adjustment Time between current and desired inventory can lead to chaos and butterfly effect in the behavior of the inventory state variable. Our paper concludes with a discussion of a hypothesis that emerged from this research.

  • PDF

Performance Evaluation of a Multi - Item Production System Operated by the CONWIP Control Mechanism (CONWIP 통제방식에 의해 운영되는 다품목 생산시스템의 성능평가)

  • Park, Chan-Woo;Lee, Hyo-Seong;Kim, Chang-Gon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • We study a multi-component production/inventory system in which individual components are made to meet various demand types. We assume that the demands arrive according to a Poisson process, but there is a fixed probability that a demand requests a particular kit of different components. Each component is produced by a flow line with several stations. The production of each component is operated by the CONWIP control mechanism. To analyse this system, we propose an approximation method based on aggregation method. In application of the aggregation method, a product-form approximation technique as well as a matrix-geometric method is used. Comparisons with simulation show that the approximation method provides fairly good results.

A Computation Model of the Quantity Supplied to Optimize Inventory Costs for Fast Fashion Industry (패스트 패션의 재고비용 최적화를 위한 상품공급 물량 산정 모델)

  • Park, Hyun-Sung;Park, Kwang-Ho;Kim, Tai-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.66-78
    • /
    • 2012
  • This paper proposes a computation model of the quantity supplied to optimize inventory costs for the fast fashion. The model is based on a forecasting, a store and production capacity, an assortment planning and quick response model for fast fashion retailers, respectively. It is critical to develop a standardized business process and mathematical model to respond market trends and customer requirements in the fast fashion industry. Thus, we define a product supply model that consists of forecasting, assortment plan, store capacity plan based on the visual merchandising, and production capacity plan considering quick response of the fast fashion retailers. For the forecasting, the decomposition method and multiple regression model are applied. In order to optimize inventory costs. A heuristic algorithm for the quantity supplied is designed based on the assortment plan, store capacity plan and production capacity plan. It is shown that the heuristic algorithm produces a feasible solution which outperforms the average inventory cost of a global fast fashion company.

A Simulation Analysis of Producton/Inventory Policy with Interference (간섭현상을 고려한 생산/재고 정책의 시뮬레이션 분석)

  • 박회룡;최진영
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.35
    • /
    • pp.131-138
    • /
    • 1995
  • For the purpose of the reduction of tile cost, a production/inventory model including the interference phenomenon was developed. By investigating the cause and the characteristics of the direct/indirect cost due to the interference phenomenon, a strategy for suitable production was developed. The developed model was quantitatively validated using an existing-EPQ model and the SIMAN package was used to simulate and animate the model. Consequently, it was presented that the total operating cost of the system could be decreased with tile proposed model.

  • PDF

A Development of Web-based Inventory System using a RFID in Injection Molding Industry (RFID를 이용한 사출산업에서의 웹기반 재고관리시스템 개발)

  • Lim, Seok-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.177-182
    • /
    • 2010
  • Industrial business environments have rapidly changed and face severe competitive challenges. The effective inventory system enables to product and deliver the products quickly for meeting due date of customer's order in this environment. This study have developed a web-based inventory system using RFID for an injection molding industry. The system analysis inventory problem issues such as inventory planning, warehouse assignment and assist to develop production scheduling. In this study, web-based inventory system using Java language and RFID technology is proposed and implemented. As the result of implementation of the system, we expected that it manages to inventory planning continually and systematically.

Implement Semi-Product Commonization Design for Reduction of Inventory : Focusing on Concrete Pump Truck Frame Assemble Process (펌프카 재고 감축을 위한 반제품 공용화 설계 구현 : H사(社) 펌프카 프레임 조립 공정 중심으로)

  • Kim, Kyung-Hun;Park, Chan-Woong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.142-149
    • /
    • 2020
  • A manufacturing company should produce its products and make a profit to continue its management. With the adoption of a multi-category small-volume production system, manufacturers that produce concrete pump-cine products are carrying out improvement activities to increase their market share amid the business-to-customer business environment. However, the slump in the construction investment environment has led to a decline in sales of concrete pump trucks. The purpose of holding inventory is to prevent loss of sales opportunities with the rate of change in the sales plan, and reducing the rate of change in the product can reduce unnecessary inventory and, in order to realize this, the goal of reducing inventory can be achieved by reviewing the parts that can be designed for common use. Therefore, to reduce the inventory of concrete pump trucks, semi-finished publicization design is necessary. According to the analysis, the frame assembly process of the 32M model is common. Production capacity can be secured without loss of sales opportunity.

Optimal Design of Process-Inventory Network Considering Exchange Rates and Taxes in Multinational Corporations (다국적 기업에서 환율과 세금을 고려한 공정-저장조 망구조의 최적설계)

  • Yi, Gyeong-Beom;Suh, Kuen-Hack
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.932-940
    • /
    • 2011
  • This paper presents an integrated analysis of supply chain and financing decisions of multi-national corporation. We construct a model in which multiple currency storage units are installed to manage the currency flows associated with multi-national supply chain activities such as raw material procurement, process operation, inventory control, transportation and finished product sales. Core contribution of this study is to quantitatively investigate the influence of macroscopic economic factors such as exchange rates and taxes on operational decisions. The supply chain is modeled by the Process-Storage Network with recycle streams. The objective function of the optimization is minimizing the opportunity costs of annualized capital investments and currency/material inventories minus the benefit to stockholders interpreted by home currency. The major constraints of the optimization are that the material and currency storage units must not be depleted. A production and inventory analysis formulation, the periodic square wave (PSW) model, provides useful expressions for the upper/lower bounds and average levels of the currency and material inventory holdups. The expressions for the Kuhn-Tucker conditions of the optimization problem are reduced to a subproblem and analytical lot sizing equations. The procurement, production, transportation and financial transaction lot sizes can be determined by analytical expressions after the average flow rates are already known. We show that, when corporate income tax is taken into consideration, the optimal production lot and storage sizes are smaller than is the case when such factors are not considered typically by 20 %.