• 제목/요약/키워드: Production Networks

검색결과 370건 처리시간 0.023초

Deep Convolutional Neural Network(DCNN)을 이용한 계층적 농작물의 종류와 질병 분류 기법 (A Hierarchical Deep Convolutional Neural Network for Crop Species and Diseases Classification)

  • ;나형철;류관희
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1653-1671
    • /
    • 2022
  • Crop diseases affect crop production, more than 30 billion USD globally. We proposed a classification study of crop species and diseases using deep learning algorithms for corn, cucumber, pepper, and strawberry. Our study has three steps of species classification, disease detection, and disease classification, which is noteworthy for using captured images without additional processes. We designed deep learning approach of deep learning convolutional neural networks based on Mask R-CNN model to classify crop species. Inception and Resnet models were presented for disease detection and classification sequentially. For classification, we trained Mask R-CNN network and achieved loss value of 0.72 for crop species classification and segmentation. For disease detection, InceptionV3 and ResNet101-V2 models were trained for nodes of crop species on 1,500 images of normal and diseased labels, resulting in the accuracies of 0.984, 0.969, 0.956, and 0.962 for corn, cucumber, pepper, and strawberry by InceptionV3 model with higher accuracy and AUC. For disease classification, InceptionV3 and ResNet 101-V2 models were trained for nodes of crop species on 1,500 images of diseased label, resulting in the accuracies of 0.995 and 0.992 for corn and cucumber by ResNet101 with higher accuracy and AUC whereas 0.940 and 0.988 for pepper and strawberry by Inception.

Method for Estimating Intramuscular Fat Percentage of Hanwoo(Korean Traditional Cattle) Using Convolutional Neural Networks in Ultrasound Images

  • Kim, Sang Hyun
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.105-116
    • /
    • 2021
  • In order to preserve the seeds of excellent Hanwoo(Korean traditional cattle) and secure quality competitiveness in the infinite competition with foreign imported beef, production of high-quality Hanwoo beef is absolutely necessary. %IMF (Intramuscular Fat Percentage) is one of the most important factors in evaluating the value of high-quality meat, although standards vary according to food culture and industrial conditions by country. Therefore, it is required to develop a %IMF estimation algorithm suitable for Hanwoo. In this study, we proposed a method of estimating %IMF of Hanwoo using CNN in ultrasound images. First, the proposed method classified the chemically measured %IMF into 10 classes using k-means clustering method to apply CNN. Next, ROI images were obtained at regular intervals from each ultrasound image and used for CNN training and estimation. The proposed CNN model is composed of three stages of convolution layer and fully connected layer. As a result of the experiment, it was confirmed that the %IMF of Hanwoo was estimated with an accuracy of 98.2%. The correlation coefficient between the estimated %IMF and the real %IMF by the proposed method is 0.97, which is about 10% better than the 0.88 of the previous method.

엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현 (Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments)

  • 배주원;한병길
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

Sustainability Practices and Implications of Fashion Brands at the Vegan Fashion Week

  • Jeong, Jiwoon;Chun, Jaehoon
    • 한국의류산업학회지
    • /
    • 제24권4호
    • /
    • pp.357-371
    • /
    • 2022
  • With the expansion of the vegan fashion industry and increasing consumer interest in vegan goods, the first inaugural Vegan Fashion Week was held in LA in 2019. However, there are no studies examining the sustainability of vegan fashion brands; this study underlines the necessity to close this research gap. This study aimed to ascertain how these issues are handled by vegan fashion brands. Using the "sustainable criterion of fashion brands," we investigated the companies that participated in Vegan Fashion Week. This study analyzed the featured brands, conducted case studies, and examined each brand's sustainability strategies and procedures. Press releases, news articles, official websites, and web magazines served as raw data for this study. Analyses of individual networks were performed and brands' approaches to veganism and sustainability were evaluated; eco-friendly material, fair trade, local production, and vegan inspiration were among these techniques. Every brand had put at least one of these requirements into practice for their business, with vegan inspiration being the most popular approach. Additionally, it was discovered that vegan fashion brands deliberately employed vegan messaging that aligns with their corporate values. After its initial launch, VFW continues to advance the discourse on vegan fashion both within the industry and with the general public. The study's implications include the analysis of vegan fashion brands' ethical manufacturing, environmental practices, and overall sustainability.

인공신경망과 유전 알고리즘을 이용한 분할 블랭크 홀더 스탬핑 공정의 성형성 향상에 관한 연구 (A Study on Improving Formability of Stamping Processes with Segmented Blank Holders using Artificial Neural Network and Genetic Algorithm)

  • 김경표;구상돈;김민수;한규민;전성욱;이종신;김지훈
    • 소성∙가공
    • /
    • 제32권5호
    • /
    • pp.276-286
    • /
    • 2023
  • The field of sheet metal forming using press technology has become essential in modern mass production systems. Draw bead is often used to enhance formability. However, optimal draw bead design often requires excessive time and cost due to iterative experimentation and sometimes results in some defects. Given these challenges, there is a need to enhance formability by introducing segmented blank holders without draw beads. In this paper, the feasibility of a localized holding strategy using segmented blank holders is evaluated without the use of draw beads. The possibility for improving the formability was evaluated by utilizing a combination of the forming limit diagram and the wrinkle pattern-based defect indicators. Artificial neural networks were used for predicting defect indicators corresponding to arbitrary input holding forces and the NSGA-II optimization algorithm is used to find optimum blank holder forces yielding better defect indicators than the original process with drawbeads. Using optimum holding forces obtained from the proposed procedure, the stamping process with the segmented blank holders can yield better formability than the conventional process with drawbeads.

Optimized Deep Learning Techniques for Disease Detection in Rice Crop using Merged Datasets

  • Muhammad Junaid;Sohail Jabbar;Muhammad Munwar Iqbal;Saqib Majeed;Mubarak Albathan;Qaisar Abbas;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.57-66
    • /
    • 2023
  • Rice is an important food crop for most of the population in the world and it is largely cultivated in Pakistan. It not only fulfills food demand in the country but also contributes to the wealth of Pakistan. But its production can be affected by climate change. The irregularities in the climate can cause several diseases such as brown spots, bacterial blight, tungro and leaf blasts, etc. Detection of these diseases is necessary for suitable treatment. These diseases can be effectively detected using deep learning such as Convolution Neural networks. Due to the small dataset, transfer learning models such as vgg16 model can effectively detect the diseases. In this paper, vgg16, inception and xception models are used. Vgg16, inception and xception models have achieved 99.22%, 88.48% and 93.92% validation accuracies when the epoch value is set to 10. Evaluation of models has also been done using accuracy, recall, precision, and confusion matrix.

Performance of Cu-SiO2 Aerogel Catalyst in Methanol Steam Reforming: Modeling of hydrogen production using Response Surface Methodology and Artificial Neuron Networks

  • Taher Yousefi Amiri;Mahdi Maleki-Kakelar;Abbas Aghaeinejad-Meybodi
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.328-339
    • /
    • 2023
  • Methanol steam reforming (MSR) is a promising method for hydrogen supplying as a critical step in hydrogen fuel cell commercialization in mobile applications. Modelling and understanding of the reactor behavior is an attractive research field to develop an efficient reformer. Three-layer feed-forward artificial neural network (ANN) and Box-Behnken design (BBD) were used to modelling of MSR process using the Cu-SiO2 aerogel catalyst. Furthermore, impacts of the basic operational variables and their mutual interactions were studied. The results showed that the most affecting parameters were the reaction temperature (56%) and its quadratic term (20.5%). In addition, it was also found that the interaction between temperature and Steam/Methanol ratio is important on the MSR performance. These models precisely predict MSR performance and have great agreement with experimental results. However, on the basis of statistical criteria the ANN technique showed the greater modelling ability as compared with statistical BBD approach.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

Study on 2D Sprite *3.Generation Using the Impersonator Network

  • Yongjun Choi;Beomjoo Seo;Shinjin Kang;Jongin Choi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1794-1806
    • /
    • 2023
  • This study presents a method for capturing photographs of users as input and converting them into 2D character animation sprites using a generative adversarial network-based artificial intelligence network. Traditionally, 2D character animations have been created by manually creating an entire sequence of sprite images, which incurs high development costs. To address this issue, this study proposes a technique that combines motion videos and sample 2D images. In the 2D sprite generation process that uses the proposed technique, a sequence of images is extracted from real-life images captured by the user, and these are combined with character images from within the game. Our research aims to leverage cutting-edge deep learning-based image manipulation techniques, such as the GAN-based motion transfer network (impersonator) and background noise removal (U2 -Net), to generate a sequence of animation sprites from a single image. The proposed technique enables the creation of diverse animations and motions just one image. By utilizing these advancements, we focus on enhancing productivity in the game and animation industry through improved efficiency and streamlined production processes. By employing state-of-the-art techniques, our research enables the generation of 2D sprite images with various motions, offering significant potential for boosting productivity and creativity in the industry.

메타버스 디지털 플랫폼의 메이크업 기능 제안 - 제페토를 중심으로 - (Proposal of Makeup's Function on the Metaverse Digital Platform - Focusing on Zepeto -)

  • 남세미;김은실
    • 한국의류산업학회지
    • /
    • 제25권6호
    • /
    • pp.739-744
    • /
    • 2023
  • With the popularization of 5G networks and the development of AI (artificial intelligence) technology, Metaverse, which creates production capacity by combining virtual space and reality, is attracting attention. In this study, we searched for makeup applications with more than 100 million downloads from October 11, 2020 to November 3, 2020 through the Google Play Store. As a result of the search, four applications were found: YouCam Makeup, YouCam Perfect, Beauty Plus, and Sweet Snap. Based on the functions provided by the four applications, we attempted to suggest makeup functions applicable to Zepeto's avatar. Functions for the eyes (eyeliner, eyelashes, mascara, eye shadow, eye shape, eyebrow shape, lenses, double eyelids), functions for the nose (nose shape), functions for the mouth (lipstick, lip shape, smile function) ) Functions corresponding to the facial contour (contour, skin foundation, blusher, shading, highlighter, face painting, theme makeup) and functions corresponding to the body (body adjustment) were proposed. This study is the first in the beauty field to propose a method of applying the functions of the Metaverse platform as the importance of digital platforms is highlighted, and is the first to propose a makeup function applied to the Metaverse so that it can be used as important basic data in the future.