• Title/Summary/Keyword: Product similarity

Search Result 295, Processing Time 0.025 seconds

A Study on the Product Planning Model based on Word2Vec using On-offline Comment Analysis (온·오프라인 댓글 분석이 활용된 Word2Vec 기반 상품기획 모델연구)

  • Ahn, Yeong-Hwi;Jung, Jin-Young;Park, Koo-Rack
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.79-80
    • /
    • 2021
  • 인터넷은 우리 경제를 디지털 경제로 변화시키며 전자상거래도 증가하고 있다. 따라서 구매자가 전자상거래에서 남기는 긍정적인, 부정적인 상품평은 상품기획의 주요 정보가 될 수 있다. 본 논문에서는 버티컬 무소음 마우스 10,000개에 대한 정형화된 데이터셋을 Word2Vec을 이용하여 유사도 분석, 온라인 상품평 빈도분석 상위 50개 단어를 제시하여 실제 상품을 사용한 후 설문조사 시행을 하였다. 온라인 상품평 유사도 분석결과 클릭 키워드에 대한 장점으로 통증(.986), 디자인(.982)가 분석되었으며 단점은 적응(.866), 불편(.854)이었다. 오프라인 상품평에서는 장점으로 디자인(17명), 단점으로 불편(11명)이었다. 또한 온라인과 오프라인의 상품평을 비교함으로써 구매자의 긍정, 부정의 의미를 교차 확인하여 유의미한 정보를 제시 하였다고 볼수 있다. 따라서 본 연구에서 제시하는 상품기획 프로세스를 신상품 개발 및 기존 상품의 개선 전략으로 적용할 수 있겠다.

  • PDF

Core Keywords Extraction forEvaluating Online Consumer Reviews Using a Decision Tree: Focusing on Star Ratings and Helpfulness Votes (의사결정나무를 활용한 온라인 소비자 리뷰 평가에 영향을 주는 핵심 키워드 도출 연구: 별점과 좋아요를 중심으로)

  • Min, Kyeong Su;Yoo, Dong Hee
    • The Journal of Information Systems
    • /
    • v.32 no.3
    • /
    • pp.133-150
    • /
    • 2023
  • Purpose This study aims to develop classification models using a decision tree algorithm to identify core keywords and rules influencing online consumer review evaluations for the robot vacuum cleaner on Amazon.com. The difference from previous studies is that we analyze core keywords that affect the evaluation results by dividing the subjects that evaluate online consumer reviews into self-evaluation (star ratings) and peer evaluation (helpfulness votes). We investigate whether the core keywords influencing star ratings and helpfulness votes vary across different products and whether there is a similarity in the core keywords related to star ratings or helpfulness votes across all products. Design/methodology/approach We used random under-sampling to balance the dataset. We progressively removed independent variables based on decreasing importance through backwards elimination to evaluate the classification model's performance. As a result, we identified classification models that best predict star ratings and helpfulness votes for each product's online consumer reviews. Findings We have identified that the core keywords influencing self-evaluation and peer evaluation vary across different products, and even for the same model or features, the core keywords are not consistent. Therefore, companies' producers and marketing managers need to analyze the core keywords of each product to highlight the advantages and prepare customized strategies that compensate for the shortcomings.

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.

An Improved Personalized Recommendation Technique for E-Commerce Portal (E-Commerce 포탈에서 향상된 개인화 추천 기법)

  • Ko, Pyung-Kwan;Ahmed, Shekel;Kim, Young-Kuk;Kamg, Sang-Gil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.9
    • /
    • pp.835-840
    • /
    • 2008
  • This paper proposes an enhanced recommendation technique for personalized e-commerce portal analyzing various attitudes of customer. The attitudes are classifies into three types such as "purchasing product", "adding product to shopping cart", and "viewing the product information". We implicitly track customer attitude to estimate the rating of products for recommending products. We classified user groups which have similar preference for each item using implicit user behavior. The preference similarity is estimated using the Cross Correlation Coefficient. Our recommendation technique shows a high degree of accuracy as we use age and gender to group the customers with similar preference. In the experimental section, we show that our method can provide better performance than other traditional recommender system in terms of accuracy.

Enhanced Recommendation Algorithm using Semantic Collaborative Filtering: E-commerce Portal (전자상거래 포탈을 위한 시맨틱 협업 필터링을 이용한 확장된 추천 알고리즘)

  • Ahmed, Shohel;Kim, Jong-Woo;Kang, Sang-Gil
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.79-98
    • /
    • 2011
  • This paper proposes a semantic recommendation technique for a personalized e-commerce portal. Semantic recommendation is achieved by utilizing the attributes of products. The semantic similarity of the products is merged with the rating information of the products to provide an accurate recommendation. The recommendation technique also analyzes various attitudes of the customer to evaluate the implicit rating of products. Attitudes are classifies into three types such as "purchasing product", "adding product to shopping cart", and "viewing the product information." We implicitly track customer attitude to estimate the rating of products for recommending products. Also we implement a session validation process to identify the valid sessions that are highly important for giving an accurate recommendation. Our recommendation technique shows a high degree of accuracy as we use age groupings of customers with similar preferences. The experimental section shows that our proposed recommendation method outperforms well known collaborative filtering methods not only for the existing customer, but also for the new user with no previous purchase record.

Intraspecific Relationship Analysis of Safflower (Carthamus tinctorius L.) Lines Collected by RAPD Markers (홍화 수집종의 RAPD에 의한 유연관계 분석)

  • Kim Jae-Chul;Choi Seong-Yong;Shin Dong-Hyun;Kim Se-Jong
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.336-339
    • /
    • 2006
  • This study was conducted to provide the genetic diversity on Safflower collections and to identify the variations which could be utilized in Safflower breeding. The RAPDs analysis was used to clarify the genetic relationships among 32 Safflower collections. Among 37 primers applied in RAPD analysis, 25 primers that generated appropriate PCR products for identification of the genetic characters in safflower collections were used. Amplified PCR showed the highly reproducible bands at $0.1{\sim}4.0kb$. The number of bands amplified in each primer showed the variations ranging from 1 to 9, with the average of 5.6. A total of 25 bands were identified among twenty-five selected primers and 23 bands (19.2%) showed polymorphism. Based on the similarity value of 0.042 in dendrogram derived from the cluster analysis, the 32 Safflower collections were classified into 6 groups. The two main groups, II and III included 12 collections (38%) and 12 collections (38%), respectively.

A Study on the Positioning of Brand Image of Ready-made Lady Wear (여성기성복 상표이미지의 포지셔닝에 관한 연구)

  • Kim Hae Jung;Lim Sook Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.2
    • /
    • pp.263-275
    • /
    • 1992
  • This study intends to provide strategic positioning of brand image analysed from the view point of perceptual dimensions of clothing consumers. Consumers are segmented on the basis of the attributes of brand image, and in each segment, perceptual map is composed according to multidimensional scaling. The results are as follows; 1. According to the Benefit Segmentation, it is statistically significant that the consumers are divided into 'product-factor oriented group 'and' image-factor oriented group'. 2. From the analysis of perceptual map upon the 'similarity of brand image,'image-factor oriented group 'perceives more differently than 'product-factor oriented group' 3. From the analysis of perceptual map with the evaluation of attributes of brand image, price, promotion and design are significant determinants in 'total consumer group'. In addition, store image is significant determinant in' image-factor oriented group' and quality is significant determinant in' product-factor oriented group'. According to the evaluation of consumers on 8 brands with determining attribute-vector, ranks of brands in each segment are similar in the vector of price and promotion but different in the vector of design between segment groups. 4. From the analysis of perceptual map upon the preference of brand image, the distribution of preference and position of ideal point are different between segment groups. 5. With evaluation of purchase habit, statistically significant differences are found between groups segmented in the degree of importance of attributes, purchasing motive, purchasing time, sources of information and expenses for clothes.

  • PDF

An Application of Network Autocorrelation Model Utilizing Nodal Reliability (집합점의 신뢰성을 이용한 네트워크 자기상관 모델의 연구)

  • Kim, Young-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.492-507
    • /
    • 2008
  • Many classical network analysis methods approach networks in aspatial perspectives. Measuring network reliability and finding critical nodes in particular, the analyses consider only network connection topology ignoring spatial components in the network such as node attributes and edge distances. Using local network autocorrelation measure, this study handles the problem. By quantifying similarity or clustering of individual objects' attributes in space, local autocorrelation measures can indicate significance of individual nodes in a network. As an application, this study analyzed internet backbone networks in the United States using both classical disjoint product method and Getis-Ord local G statistics. In the process, two variables (population size and reliability) were applied as node attributes. The results showed that local network autocorrelation measures could provide local clusters of critical nodes enabling more empirical and realistic analysis particularly when research interests were local network ranges or impacts.

  • PDF

Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems (잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법)

  • Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1010-1014
    • /
    • 2010
  • Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.

Assessment of the Korean-Chinese Exports Competition in Sophisticated Markets

  • La, Jung Joo;Shin, Wonkyu
    • Journal of Korea Trade
    • /
    • v.23 no.2
    • /
    • pp.1-13
    • /
    • 2019
  • Purpose - This paper empirically investigates the competition effect of exports between Korea and China in their common-export markets considering market sophistication. Modern market sophistication includes an importing country's aggregate demand for products of high quality, design, novelty, eco-friendliness, and even IPR protection. Using an empirical analysis to identify the demand for product quality across countries, this paper estimates the effects of market sophistication on the competition between Korean exports and Chinese products. Design/Methodology - Our empirical model considers the relationship between an importing country's consumer sophistication and the export competition between Korea and China. This study employs the existing theoretical framework to identify the aggregate demand for product quality across countries. Using a quite direct measurement (the consumer sophistication index, our analysis investigates the differential effects of Korea's export market sophistication, particularly in markets where Korean exports are in competition with similar Chinese products. Findings - Our main findings can be summarized as follows: the negative effects of the export competition between Korea and China on Korea's exports are stronger in third markets where consumers are less sophisticated while the effects are not as pronounced in markets where consumers are more sophisticated. This result, however, best applies to differentiated goods which significantly vary in product quality. Originality/value - Existing studies focus on the supply side of production and make the assumption that the market preference for export quality is identical across countries. This paper attempts to evaluate the export competition between Korea and China from the demand-side perspective. This area of trade studies is underexplored both empirically and in theory, although the issue has long been important to Korean and world trade.