• Title/Summary/Keyword: Product reviews

Search Result 397, Processing Time 0.025 seconds

Impact of Negative Review Type, Brand Reputation, and Opportunity Scarcity Perception on Preferences of Fashion Products in Social Commerce (소셜커머스에서 부정적 리뷰 유형, 브랜드 명성, 기회희소성지각이 패션제품 선호도에 미치는 영향)

  • Joo, Bora;Hwang, Sunjin
    • Journal of Fashion Business
    • /
    • v.20 no.4
    • /
    • pp.207-225
    • /
    • 2016
  • This study aims to analyze the impact of negative review type, brand reputation and opportunity scarcity perception, on preferences of fashion products in social commerce. For the above evaluation, we used the 2 (negative review type: objective/subjective) ${\times}2$ (brand reputation: high/low) ${\times}2$ (opportunity scarcity perception: high/low) model, designed with three mixed elements. We enrolled 260 women in their 20s and 30s, who live in Seoul and have used social commerce; a final total of 207 subjects were considered for analysis. The data were analyzed using the SPSS 18 program and reliability test, t-test and three-way ANOVA were performed. Following observations were made: First, preferences were higher when the subjects read objective negative reviews than subjective negative reviews, and when a fashion product was from a brand of high reputation than a brand of low reputation. Second, the interaction effect between negative review type and brand reputation was greater among the subjects whose opportunity scarcity perception is high, than those having low opportunity scarcity perception. Thus, we conclude that the social commerce should encourage consumers to write more objective reviews, and fashion brands should manage their reputations well. Also, social commerce can use scarcity messages aggressively to increase preferences of global fashion luxury goods, which is actively marketed in social commerce since 2015.

Sentiment Analysis and Star Rating Prediction Based on Big Data Analysis of Online Reviews of Foreign Tourists Visiting Korea (방한 관광객의 온라인 리뷰에 대한 빅데이터 분석 기반의 감성분석 및 평점 예측모형)

  • Hong, Taeho
    • Knowledge Management Research
    • /
    • v.23 no.1
    • /
    • pp.187-201
    • /
    • 2022
  • Online reviews written by tourists provide important information for the management and operation of the tourism industry. The star rating of online reviews is a simple quantitative evaluation of a product or service, but it is difficult to reflect the sincere attitude of tourists. There is also an issue; the star rating and review content are not matched. In this study, a star rating prediction model based on online review content was proposed to solve the discrepancy problem. We compared the differences in star ratings and sentiment by continent through sentiment analysis on tourist attractions and hotels written by foreign tourists who visited Korea. Variables were selected through TF-IDF vectorization and sentiment analysis results. Logit, artificial neural network, and SVM(Support Vector Machine) were used for the classification model, and artificial neural network and SVR(Support Vector regression) were applied for the rating prediction model. The online review rating prediction model proposed in this study could solve inconsistency problems and also could be applied even if when there is no star rating.

Predicting Movie Revenue by Online Review Mining: Using the Opening Week Online Review (영화 흥행성과 예측을 위한 온라인 리뷰 마이닝 연구: 개봉 첫 주 온라인 리뷰를 활용하여)

  • Cho, Seung Yeon;Kim, Hyun-Koo;Kim, Beomsoo;Kim, Hee-Woong
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.113-134
    • /
    • 2014
  • Since a movie is an experience goods, purchase can be decided upon preliminary information and evaluation. There are ongoing researches on what impact online reviews might have on movie revenues. Whereas research in the past was focused on the effect of online reviews. The influence of online reviews appears to be significant in products like a movie because it is difficult to evaluate the feature prior to "consuming" the product. Since an online review is regarded to be objective, consumers find it more trustworthy. Contrary to prior research focused on movie review ratings and volume, we focus moves on movie features related specific reviews. This research proposes a predictive model for movie revenue generation. We decided 15 criteria to classify movie features collected from online reviews through the online review mining and made up feature keyword list each criterion. In addition, we performed data preprocessing and dimensional reduction for data mining through factor analysis. We suggest the movie revenue predictive model is tested using discriminant analysis. Following the discriminant analysis, we found that online review factors can be used to predict movie popularity and revenue stream. We also expect using this predictive model, marketers and strategic decision makers can allocate their resources in more parsimonious fashion.

Digital Nudge in an Online Review Environment: How Uploading Pictures First Affects the Quality of Reviews (온라인 리뷰 환경에서의 디지털 넛지: 사진을 먼저 업로드 하는 행동이 리뷰의 품질에 미치는 영향 )

  • Jaemin Lee;Taeyoung Kim;HoGeun Lee
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.1-26
    • /
    • 2023
  • Consumers tend to trust information provided by other consumers more than information provided by sellers. Therefore, while inducing consumers to write high-quality reviews is a very important task for companies, it is not easy to produce such high-quality reviews. Based on previous research on review writing and memory recall, we decided to develop a way to use digital nudge to help consumers naturally write high-quality reviews. Specifically, we designed an experiment to verify the effect of uploading a photo during the online review process on the quality of review of the review writer. We then recruited subjects and then divided them into groups that upload photos first and groups that do not. A task was assigned to each subject to write positive and negative reviews. As a result, it was confirmed that the behavior of uploading a photo first increases the review length. In addition, it was confirmed that when online users who upload photos first have extremely negative satisfaction with the product, the extent of two-sidedness of the review content increases.

Effects of Market Orientation on New Product Performance of Food/Pharmaceutical Firms : Mediators of Product Quality, Employee Satisfaction, and Innovation Speed (식품·제약업체의 시장지향성이 신제품성과에 미치는 영향 : 제품품질, 직원만족 및 혁신속도의 매개역할)

  • Goh, Gi-Ho;Jung, Duk-Hwa;Song, Yoon-Heon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.870-883
    • /
    • 2011
  • The primary purpose of this study is to examine the relationship between market orientation and new product performance in a manufacturing firms, and examines how product quality, employee satisfaction, and innovation speed play a mediating role between market orientation and new product performance. Based on relevant literature reviews, this study posits three mediators, that is, product quality, employee satisfaction, and innovation speed as key determinants of new product performance. And then we structured a research model and hypotheses about relationship between these variables. A total 159 usable survey responses of Korean food/pharmaceutical firms have been employed in the analysis. The data were analyzed with Amos12.0K. The results be summarized as follows: First, market orientation had a positive influence upon product quality, employee satisfaction, and innovation speed. Second, two mediators of employee satisfaction, innovation speed had a positive influence upon new product performance. Third, employee satisfaction had a positive influence upon product quality and innovation speed. According to the result of this research, a manufacturing firms have to focus on the market orientation and understand the role of product quality, employee satisfaction, and innovation speed mediators on the process between the market orientation and the new product performance.

A Text Mining Analysis of Attributes for Satisfaction and Effect of Consumer Ratings to Korea and China Duty Free Stores - Focusing on Chinese Tourists - (텍스트 마이닝을 통한 한국과 중국 시내면세점 만족 속성과 소비자 평점에 미치는 영향 분석 -중국인 관광객을 중심으로)

  • Yang, DaSom;Kim, Jong Uk
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.1-9
    • /
    • 2020
  • This study aims to find new attributes by analyzing Korea and China duty free store online reviews and examine the influence of these attributes on star ratings(satisfaction)of duty free store. For study, we used Dazhong Dianping that largest online review site in China. Using R, we analyzed 5,659 reviews of Korea duty free store and 4,051 reviews of China duty free store. According to the analysis, Sale, Food and Membership attributes had a positive effect on star rating of Korea duty free store. Sale, Product, Airport, Food and Membership had a positive effect on star rating of China duty free store. This study has identified new factors such as food that showed the importance of providing space of restaurants while shopping at duty free store. This study has contributed to the existing literature by finding new attribute such as food. Practically, this finding will help to duty free industry workers better understand the impact of providing space of restaurants on duty free store.

Multimodal Sentiment Analysis Using Review Data and Product Information (리뷰 데이터와 제품 정보를 이용한 멀티모달 감성분석)

  • Hwang, Hohyun;Lee, Kyeongchan;Yu, Jinyi;Lee, Younghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.15-28
    • /
    • 2022
  • Due to recent expansion of online market such as clothing, utilizing customer review has become a major marketing measure. User review has been used as a tool of analyzing sentiment of customers. Sentiment analysis can be largely classified with machine learning-based and lexicon-based method. Machine learning-based method is a learning classification model referring review and labels. As research of sentiment analysis has been developed, multi-modal models learned by images and video data in reviews has been studied. Characteristics of words in reviews are differentiated depending on products' and customers' categories. In this paper, sentiment is analyzed via considering review data and metadata of products and users. Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Self Attention-based Multi-head Attention models and Bidirectional Encoder Representation from Transformer (BERT) are used in this study. Same Multi-Layer Perceptron (MLP) model is used upon every products information. This paper suggests a multi-modal sentiment analysis model that simultaneously considers user reviews and product meta-information.

A Study of Fashion Design Preferences of Early Adopters - Focusing on Technological Fashion Products - (얼리 어답터의 패션디자인 소구 특성에 관한 연구 - 테크놀로지를 반영한 제품을 중심으로 -)

  • Park, Judy Joo-Hee;Kahng, Jung-Min;Ha, Ji-Soo
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.1
    • /
    • pp.151-160
    • /
    • 2008
  • `Early adopters,` a term first used by Everett Rogers in 1957, refers to people who are among the first to try a new product and like to evaluate the product for others. Early adopters in the digital age of the 21st century, greatly influence others by exchanging information on products and writing product reviews on Internet boards. Technological products have recently been released in the fashion world to become important fashion items, and early adopters are active buyers of these products. The purpose of this study is to examine the values and characteristics of early adopters as consumers of technological fashion products, and present a standard for designing fashion products in the future. This study was based on documentary research, Internet research and in-depth interviews. Documentary research was carried out to examine the lifestyles, characteristics and consumption habits of early adopters. Internet research was done to understand the tendencies of Korean early adopters, and a total of 18 websites were studied in 7 product categories. The subjects of in-depth interviews were 6 people who were either webmasters or members of early adopter-related websites. IT field early adopters tended to pursue new technologies, and fashion early adopters placed importance on how well a person could express their own style. New, unique, useful and pretty were the key words to describe the tendencies of early adopters, and fashion early adopters preferred the latest contemporary styles. Interviewees placed most importance on price, design and function of products. Since IT related products are continuously being added on to clothes and becoming fashion products themselves, further research on technology-related fashion design would be significant.

Research on the Influencing Factors of the Usefulness of the Online Review and Products Sales : Based on Chinese Online Shopping Platform Data (온라인 리뷰 유용성과 상품매출에 영향을 주는 요인 : 중국 온라인 쇼핑 플랫폼 데이터를 기반으로)

  • Hwang, Chim;Kwon, Young-Jin;Lee, Sang-Yong Tom
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.2
    • /
    • pp.53-72
    • /
    • 2018
  • This empirical study explored characteristics that affect the usefulness of online reviews, in the China e-commerce platform, and implemented multiple regressions to find factors that significantly influence on product sales, ultimately. Till now, prior studies have continuously revealed what factor affects usefulness of online review or product sales, only in respective terms. The point of our study is that we built two-level regression models, thereby being able to comprehensively analyze these two different targets. Before plunging into running regressions, we carefully collected 192,764 online review data for 200 products extracted from the Jingdong, the second biggest e-commerce platform in China. Also, we gathered "review sentimental scores" variable from each review and used that one as a core variable in our regression model, thus we were able to implement both quantitative and qualitative research. The evidences from the two-level regression models showed that the extent to which a product is experience good positively affects both usefulness of a review and product sales, again the usefulness of a review contributes to product sales in sequence. Also, the property of experience good has interaction effect on both for two-level regression models. Our main findings highlight the importance of role of online review to business performance of e-commerce firms.

Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site (사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로)

  • Byun, Sungho;Lee, Donghoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.23-43
    • /
    • 2016
  • As a result of the growth of Internet data and the rapid development of Internet technology, "big data" analysis has gained prominence as a major approach for evaluating and mining enormous data for various purposes. Especially, in recent years, people tend to share their experiences related to their leisure activities while also reviewing others' inputs concerning their activities. Therefore, by referring to others' leisure activity-related experiences, they are able to gather information that might guarantee them better leisure activities in the future. This phenomenon has appeared throughout many aspects of leisure activities such as movies, traveling, accommodation, and dining. Apart from blogs and social networking sites, many other websites provide a wealth of information related to leisure activities. Most of these websites provide information of each product in various formats depending on different purposes and perspectives. Generally, most of the websites provide the average ratings and detailed reviews of users who actually used products/services, and these ratings and reviews can actually support the decision of potential customers in purchasing the same products/services. However, the existing websites offering information on leisure activities only provide the rating and review based on one stage of a set of evaluation criteria. Therefore, to identify the main issue for each evaluation criterion as well as the characteristics of specific elements comprising each criterion, users have to read a large number of reviews. In particular, as most of the users search for the characteristics of the detailed elements for one or more specific evaluation criteria based on their priorities, they must spend a great deal of time and effort to obtain the desired information by reading more reviews and understanding the contents of such reviews. Although some websites break down the evaluation criteria and direct the user to input their reviews according to different levels of criteria, there exist excessive amounts of input sections that make the whole process inconvenient for the users. Further, problems may arise if a user does not follow the instructions for the input sections or fill in the wrong input sections. Finally, treating the evaluation criteria breakdown as a realistic alternative is difficult, because identifying all the detailed criteria for each evaluation criterion is a challenging task. For example, if a review about a certain hotel has been written, people tend to only write one-stage reviews for various components such as accessibility, rooms, services, or food. These might be the reviews for most frequently asked questions, such as distance between the nearest subway station or condition of the bathroom, but they still lack detailed information for these questions. In addition, in case a breakdown of the evaluation criteria was provided along with various input sections, the user might only fill in the evaluation criterion for accessibility or fill in the wrong information such as information regarding rooms in the evaluation criteria for accessibility. Thus, the reliability of the segmented review will be greatly reduced. In this study, we propose an approach to overcome the limitations of the existing leisure activity information websites, namely, (1) the reliability of reviews for each evaluation criteria and (2) the difficulty of identifying the detailed contents that make up the evaluation criteria. In our proposed methodology, we first identify the review content and construct the lexicon for each evaluation criterion by using the terms that are frequently used for each criterion. Next, the sentences in the review documents containing the terms in the constructed lexicon are decomposed into review units, which are then reconstructed by using the evaluation criteria. Finally, the issues of the constructed review units by evaluation criteria are derived and the summary results are provided. Apart from the derived issues, the review units are also provided. Therefore, this approach aims to help users save on time and effort, because they will only be reading the relevant information they need for each evaluation criterion rather than go through the entire text of review. Our proposed methodology is based on the topic modeling, which is being actively used in text analysis. The review is decomposed into sentence units rather than considering the whole review as a document unit. After being decomposed into individual review units, the review units are reorganized according to each evaluation criterion and then used in the subsequent analysis. This work largely differs from the existing topic modeling-based studies. In this paper, we collected 423 reviews from hotel information websites and decomposed these reviews into 4,860 review units. We then reorganized the review units according to six different evaluation criteria. By applying these review units in our methodology, the analysis results can be introduced, and the utility of proposed methodology can be demonstrated.