• Title/Summary/Keyword: Product reviews

Search Result 397, Processing Time 0.02 seconds

Core Keywords Extraction forEvaluating Online Consumer Reviews Using a Decision Tree: Focusing on Star Ratings and Helpfulness Votes (의사결정나무를 활용한 온라인 소비자 리뷰 평가에 영향을 주는 핵심 키워드 도출 연구: 별점과 좋아요를 중심으로)

  • Min, Kyeong Su;Yoo, Dong Hee
    • The Journal of Information Systems
    • /
    • v.32 no.3
    • /
    • pp.133-150
    • /
    • 2023
  • Purpose This study aims to develop classification models using a decision tree algorithm to identify core keywords and rules influencing online consumer review evaluations for the robot vacuum cleaner on Amazon.com. The difference from previous studies is that we analyze core keywords that affect the evaluation results by dividing the subjects that evaluate online consumer reviews into self-evaluation (star ratings) and peer evaluation (helpfulness votes). We investigate whether the core keywords influencing star ratings and helpfulness votes vary across different products and whether there is a similarity in the core keywords related to star ratings or helpfulness votes across all products. Design/methodology/approach We used random under-sampling to balance the dataset. We progressively removed independent variables based on decreasing importance through backwards elimination to evaluate the classification model's performance. As a result, we identified classification models that best predict star ratings and helpfulness votes for each product's online consumer reviews. Findings We have identified that the core keywords influencing self-evaluation and peer evaluation vary across different products, and even for the same model or features, the core keywords are not consistent. Therefore, companies' producers and marketing managers need to analyze the core keywords of each product to highlight the advantages and prepare customized strategies that compensate for the shortcomings.

Analysis of Differences between On-line Customer Review Categories: Channel, Product Attributes, and Price Dimensions (온라인 고객 리뷰의 분류 항목별 차이 분석: 채널, 제품속성, 가격을 중심으로)

  • Yang, So-Young;Kim, Hyung-Su;Kim, Young-Gul
    • Asia Marketing Journal
    • /
    • v.10 no.2
    • /
    • pp.125-151
    • /
    • 2008
  • Both companies and consumers are highly interested in on-line customer reviews which enable consumers to share their experience and knowledge about products. In this study, after classifying real reviews into context units and deriving categories, we analyzed differences between categories based on channel(manufacturers' homepage/ shopping mall), product attribute(search/experience) and price(high/low). The method to derive categories is based on roughly adopting constructs of ACSI model and elaborate and repetitive classification of real reviews. We set up the classification category with 3 levels. Level 1 consists of product and service, level 2 consists of function, design, price, purchase motive, suggestion/user-tip and recommendation/repurchase in product and AS/up-grade and delivery/others in service and level 3 is composed of details of level 2 of category. We could find remarkable differences between channels in all 8 items of level 2 of category. As the number of context units in homepage is more than in shopping mall, we found reviews in homepage is more concrete. Moreover, overall satisfaction in review was higher at homepage's. Also, in product attribute dimension, we found different patterns of reviews in design, purchase motive, suggestion/user-tip, recommendation/repurchase, AS/up-grade and delivery/others and no difference in overall customer's satisfaction. In price dimension, we found differences between high and low price in design, price and AS/up-grade and no difference in overall customer's satisfaction.

  • PDF

Frequency Matrix Based Summaries of Negative and Positive Reviews

  • Almuhannad Sulaiman Alorfi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.101-109
    • /
    • 2023
  • This paper discusses the use of sentiment analysis and text summarization techniques to extract valuable information from the large volume of user-generated content such as reviews, comments, and feedback on online platforms and social media. The paper highlights the effectiveness of sentiment analysis in identifying positive and negative reviews and the importance of summarizing such text to facilitate comprehension and convey essential findings to readers. The proposed work focuses on summarizing all positive and negative reviews to enhance product quality, and the performance of the generated summaries is measured using ROUGE scores. The results show promising outcomes for the developed methods in summarizing user-generated content.

Identifying the Actual Impact of Online Social Interactions on Demand

  • Dong Soo Kim
    • Asia Marketing Journal
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • Firms often engage in manipulating online reviews as a promotional activity to influence consumers' evaluation on their products. With the prevalence of the promotional activities, consumers may notice and discount the reviews generated by the promotional activities. Discounting the firm-generating reviews may cause systematic measurement errors in the valence variable and lead to a negative bias when estimating the effect of consumers' organic reviews on demand. To correct the bias, this study proposes including product-specific bias-correction terms representing the proportion of extreme reviews in analysis. For illustration, the proposed method is applied to a demand model for data of movies released in South Korea. The results confirm a negative bias in the estimate of the valence sensitivity of demand. The negative bias potentially leads to an underestimation of the magnitude of the contagion effect through social interactions, a key component of evaluating the value of a satisfied consumer.

Effects of E-review attributes on Purchase Intention for Fashion Products across E-community Types (커뮤니티 유형에 따라 온라인 리뷰속성이 패션제품 구매의도에 미치는 영향)

  • Park, Eun Joo;Kang, Joo Hee
    • Korean Journal of Human Ecology
    • /
    • v.21 no.5
    • /
    • pp.1005-1016
    • /
    • 2012
  • Recently, as growing number of consumers publish product and service reviews on the Internet, e-review has received attention from retailers and researchers. E-review, a form of electronic word-of-mouth (eWOM) which is typically shared between strangers whose identity and credibility are unknown, has become an important product information source as social media has facilitated information exchanges between more consumers. The objective of this study was to investigate the effects of e-review attributes on purchase intention for fashion products, which is mediated by trust of e-review, as well as to explore the differences between consumer communities and cooperative communities. A questionnaire was developed based on previous researches. Data were gathered from adults living in Busan. The results were analyzed by factor analysis, t-test, and regression using SPSS 18.0. The results showed that consumers tended to recognize e-reviews from consumer communities as exaggerated information, while they considered reviews from cooperative communities as reliable information, which gave the latter higher purchase intention. There were significant differences in e-review attributes for fashion products (e.g., Exaggeration, Entertainment, Innocence, and Agreement), purchase intention between consumer communities (e.g: Blog, Internet cafe) and cooperative communities (e.g: general malls and specialty malls). For both communities, purchase intention of fashion products was influenced by its entertainment attributes and perceived trust of e-reviews. These results suggest that e-retailers need to focus on understanding the causes of purchase intention with e-reviews for fashion products. Specifically, e-retailers should recognize that e-reviews of fashion products were associated primarily with entertaining and with consumers' trust. Based on these findings, managerial implications are presented.

Classification of Consumer Review Information Based on Satisfaction/Dissatisfaction with Availability/Non-availability of Information (구매후기 정보의 충족/미충족에 따른 소비자의 만족/불만족 인식 및 구매후기 정보의 유형화)

  • Hong, Hee-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.9
    • /
    • pp.1099-1111
    • /
    • 2011
  • This study identified the types of consumer review information about apparel products based on consumer satisfaction/dissatisfaction with the availability/non-availability of consumer review information for online stores. Data were collected from 318 females aged 20s' to 30s', who had significant experience in reading consumer reviews posted on online stores. Consumer satisfaction/dissatisfaction with availability or non-availability of review information on online stores is different for information in regards to apparel product attributes, product benefits, and store attributes. According to the concept of quality elements suggested by the Kano model, two types of consumer review information were determined: Must-have information (product attribute information about size, fabric, color and design of the apparel product; benefit information about washing & care and comport of the apparel product; store attribute information about responsiveness, disclosure, delivery and after service of the store) and attracting information (attribute information about price comparison; benefit information about coordination with other items, fashionability, price discounts, value for price, reaction from others, emotion experienced during transaction, symbolic features for status, health functionality, and eco-friendly feature; store attribute information about return/refund, damage compensation and reputation/credibility of online store and interactive and dynamic nature of reviews among customers). There were significant differences between the high and low involvement groups in their perceptions of consumer review information.

A Ghost in the Shell? Influences of AI Features on Product Evaluations of Smart Speakers with Customer Reviews (A Ghost in the Shell? 고객 리뷰를 통한 스마트 스피커의 인공지능 속성이 평가에 미치는 영향 연구)

  • Lee, Hong Joo
    • Journal of Information Technology Services
    • /
    • v.17 no.2
    • /
    • pp.191-205
    • /
    • 2018
  • With the advancement of artificial intelligence (AI) techniques, many consumer products have adopted AI features for providing proactive and personalized services to customers. One of the most prominent products featuring AI techniques is a smart speaker. The fundamental of smart speaker is a portable wireless Internet connecting speaker which already have existed in a consumer market. By applying AI techniques, smart speakers can recognize human voices and communicate with them. In addition, they can control other connecting devices and provide offline services. The goal of this study is to identify the impact of AI techniques for customer rating to the products. We compared customer reviews of other portable speakers without AI features and those of a smart speaker. Amazon echo is used for a smart speaker and JBL Flip 4 Bluetooth Speaker and Ultimate Ears BOOM 2 Panther Limited Edition are used for the comparison. These products are in the same price range ($50~100) and selected as featured products in Amazon.com. All reviews for the products were collected and common words for all products and unique words of the smart speaker were identified. Information gain values were calculated to identify the influences of words to be rated as positive or negative. Positive and negative words in all the products or in Amazon echo were identified, too. Topic modeling was applied to the customer reviews on Amazon echo and the importance of each topic were measured by summating information gain values of each topic. This study provides a way of identifying customer responses on the AI feature and measuring the importance of the feature among diverse features of the products.

E-retailing, As a Channel of Product & Service Innovation - from manufacturers' viewpoint

  • Kang, Sang-Ku;Lee, Mi-Kyoung;Yang, Tae-Yong
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2000.05a
    • /
    • pp.301-320
    • /
    • 2000
  • This paper is concerned with characteristics of Internet retailing and manufacturer's product development strategy using Internet retailing. First, this paper reviews the current status of Internet retailing companies and explains some barriers to taking advantage of Internet retailing. Second, this paper gives a few suggestions for manufacturer's strategy for product innovation and development which is based on Internet retailing. The suggestions are (1) Product Innovation (2) Target Costing (3) Eliminate Design Mistakes.

  • PDF

Attributes of Trusted Blog Contents: Through Analysis of Product-reviews in Powerblogs and Consumer Survey (신뢰받는 블로그 콘텐츠의 특성 탐구: 파워블로그의 사용후기분석과 소비자 조사를 통하여)

  • Soh, Hyeonjin
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.1
    • /
    • pp.73-82
    • /
    • 2013
  • The purpose of this study is to explore attributes of trusted blog product-reviews and to examine the weight of each attribute. First, the attributes of trusted blog product-reviews were collected through consumer interviews. Second, the trust attributes were examined in terms of their relative importance. The results are: 1) Thirty-five of trust attributes were discovered and categorized into 'popularity', 'presence', 'attractiveness', 'trustworthiness', and 'expertise'. 2) In general, attributes reflecting usefulness, trustworthiness and attractiveness seemed the most important trust factors. 3) 'presence', which have not been highlighted so far in trust research, was emerged as an important trust factor in the web blog context. Theoretical and practical implications were discussed.

Developing the Customer Quality Satisfaction Index Using Online Reviews: Case Study of TV (리뷰를 활용한 고객 품질 만족도 지수 개발 : TV 사례연구)

  • Jiye, Shin;Heesoo, Kim;Jaiho, Lee;Hyoungwoo, Jeon;Jeongsik, Ahn;Sunghoon, Hwang
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.863-876
    • /
    • 2022
  • Purpose: The purpose of this study is to propose the product quality satisfaction index based on multiple linear regression using customer reviews. Methods: The proposed framework is composed of four steps. First, we collect online reviews and divide it into insight phrases. The insight phrases are classified using product attribute dictionary and sentiment analysis is conducted. Second, the importance of attributes is calculated in consideration of both regression coefficient and frequency. Third, the positive rate is calculated concerning sentiment analysis result. Therefore, the quality satisfaction index is measured by the weighted sum of importance and positive rate in the last step. Results: We conduct a case study using 2-years(2020, 2021) of Samsung TV reviews to confirm the effectiveness of the proposed methodology. As a result, we found that Picture quality is the most crucial attribute in TV evaluation. The importance of Gaming and content has grown up as the positive rate has also increased. Therefore, the overall satisfaction of TV has increased in 2021 compared to 2020. Conclusion: The result of this study shows that the proposed index reveals the customer's mind efficiently and can be explained by the importance and positive rate of each attribute. By using the proposed index, companies are able to improve and the priority of improvement can be determined.