• Title/Summary/Keyword: Product Recommendation

Search Result 312, Processing Time 0.024 seconds

A Study on the Time-sharing Condominium use Behavior by Demographic Characterristics (인구통계변인에 따른 휴양콘도미니엄 이용행태 연구)

  • Kim, Jong Won;Ban, Seung Ju;Kim, Jae Tae
    • Korea Real Estate Review
    • /
    • v.24 no.1
    • /
    • pp.91-104
    • /
    • 2014
  • This paper studied condo selection attributes that affected satisfaction, recommendation and revisitation, in particular, investigated gender and age differences. Research target is the group who revisited time-sharing condominium within one year. The paper seeks to understand factors that affect and contribute to customer satisfaction and intentions for reuse. This study model was analyzed by the basic statistical analysis, factor analysis, reliability analysis and multiple analysis, using SPSS 18.0 and AMOS 18.0. We found that 5 condo selection attributes that have significant affect on user satisfaction: facility, service, product, accessibility and expense. Furthermore it was evident that user satisfaction has a significant effect on condo recommendation and intentions of reuse. With regard to sex, for male users expense, accessibility and service had a significant effect on their satisfaction level, while for female users, product was most important. User satisfaction both have a significant effect on recommendation and intentions of reuse but for females this was more evident. Regarding the age, for 20~30 age band, service and product factor had a significant effect on user satisfaction in order, whereas, for the age band of over 40s, expense, product and facility factors were important. User satisfaction of both have a significant effect on recommendation and intentions of reuse. In the meantime user satisfaction of 20~30 age band had a bigger positive significant effect on recommendation and intentions of reuse than the age band over 40s.

Customer Recommendation Using Customer Preference Estimation Model and Collaborative Filtering (선호도 추정모형과 협업 필터링기법을 이용한 고객추천시스템)

  • Shin, Taeksoo;Chang, Kun-Nyeong;Park, Youjin
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.4
    • /
    • pp.1-14
    • /
    • 2006
  • This study proposed a customer preference estimation model for production recommendation and a method to enhance the performance of product recommendation using the estimated customer preference information. That is, we suggested customer preference estimation model to estimate exactly customer's product preference with his behavior. This model shows the relationship of customer's behaviors with his preferences. The proposed estimation model is optimized by learning the relative weights of customer's behavior variables to have an effect on his preference and enables to estimate exactly his preference. To validate our proposed models, we collected virtual book store data and then made a comparative analysis of our proposed models and a benchmark model in terms of performance results of collaborative filtering for product recommendation. The benchmark model means a prior preference weighting model. The results of our empirical analysis showed that our proposed model performed better results than the benchmark model.

  • PDF

Effects of Independent Operator's Company Selection Attributes on Economic and Non-Economic Satisfaction, Trust, and Recommendation in the Network Marketing Industry (네트워크 마케팅 산업에서 독립 사업자의 기업 선택 속성이 경제적 및 비경제적 만족과 신뢰, 추천의도에 미치는 영향)

  • Roh, Hyun-Sik
    • The Korean Journal of Franchise Management
    • /
    • v.10 no.1
    • /
    • pp.19-32
    • /
    • 2019
  • Purpose - Since the opening of Korea's distribution market, the domestic network marketing market has been continuing to grow. In this context, research on network marketing independent operators, which plays the most important role in the network marketing industry, is insufficient. This study was to identify the effects of Independent Operator's Company Selection Attributions on the Economic and Non-Economic Satisfaction, Trust, and Recommendation. The results will provide strategic direction, theoretical and practical implications for companies and operators in the network marketing industry. Research design, data, and methodology - In order to verify the research hypotheses, the data were collected from Independent Operators of Network marketing industry using questionnaires. The pretest was conducted from January 8 to 19, 2018, and the main survey was conducted from February 1 to 28. A total of 210 questionnaires, of which 193 copies were collected. The data were analyzed with SPSS 21.0. and AMOS 21.0. Results - The results are as follows; product competitiveness and system competitiveness have significant effects on economic satisfaction and non-economic satisfaction. Economic and non-economic satisfaction have significant effects on business trust. Economic and non-economic satisfaction did not influence recommendation intention directly, but influence it indirectly. Business trust has a significant effect on business recommendation intention. Conclusions - After starting network marketing business as an independent operator, the competitiveness of the company is meaningless, and product competitiveness and system competitiveness are important factors for economic and non-economic satisfaction. Therefore, network marketing companies and independent operators should prioritize product competitiveness and system competitiveness between business development. The findings show that trust in the business is very important for active business Recommendation to others. Therefore, network marketing firms and independent operators need to make efforts to meet economic and non-economic satisfaction, which have a significant impact on business trust.

A Study on the Context Characteristics and Consumer Characteristics Affecting Fashion Curation Shopping (패션 큐레이션(curation) 쇼핑에 영향을 미치는 컨텍스트 특성과 소비자 특성에 관한 연구)

  • Juhee Kim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.41-51
    • /
    • 2023
  • This study attempted to analyze the context characteristics and consumer characteristics that affect fashion curation shopping. The data used for this study were 223 questionnaires targeting male and female college students in their 20s in Busan and South Gyeongsang Province who had had the curated shopping experience in the latest three months. The SPSS program was used for the data analysis, and a reliability measurement, factor analysis, multiple regression analysis, T-test, and one-way ANOVA were conducted. The results were as follows. First, fashion curation shopping exhibited three factors: product subscription, marketing use, and product recommendation shopping. Furthermore, the context characteristics had sub concepts of five factors: selection, sharing, experience, discovery, and storage. Second, the context characteristics (selection, sharing, experience, discovery, and storage) had a significant influence on product subscription, marketing use, and product recommendation, which belong to the curation shopping category. Third, the fashion consumers' price sensitivity, trend sensitivity, and product knowledge had a deep impact on the marketing use and product recommendation. Fourth, there was no difference in the fashion curation shopping by male and female consumers and the average monthly fashion shopping frequency, and there were differences in shopping cost and time. This study can analyze the context and consumer characteristics that affect fashion curation shopping to establish an efficient fashion curation shopping system in practical terms. Additionally, academically, it can be proposed as basic data on the development of measurement tools for analyzing consumer behavior that prefers fashion curation shopping.

An Implementation of the B2B e-Marketplace Product Recommendation System using Genetic Algorithm (유전자 알고리즘을 이용한 B2B e-Marketplace 상품제안시스템 구현)

  • Park, Hyunki;Ahn, Jaekyoung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • In B2B e-Marketplace for free gifts and goods, product-mix recommendation is provided frequently by analysing customer logs and/or performing collaborative and rules-based filtering. This study proposes a new process that encompasses the genetic algorithm and key working processes of B2B e-marketplace based on the previous cooperate client order data. Efficiency and accuracy of the proposed system have been confirmed by cross-confirmation of accumulated data in the e-marketplace. The system can provide better opportunities for manufactures and suppliers to select optimized product-mix without time consuming trials and errors in their B2B e-marketplace networks.

Evaluation of Airline Service Education Using the CIPP Model -focus on factors which influenced satisfaction and recommendation of the training program- (CIPP모형을 활용한 항공서비스교육 평가 -만족도 및 재추천에 미치는 요인을 중심으로-)

  • Park, Hye-Young
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.510-523
    • /
    • 2012
  • The purpose of this study is to evaluate an airline service training program based on the CIPP model. Evaluation areas were divided into context, input, process, and product. We analyzed the factors which influenced program satisfaction and recommendation of the training program. Two hundred and one learners who participated in an airline service training program were selected for a survey. The results of this study are as follows. The factors which positively influenced training satisfaction were educational goals in context evaluation, interaction between learners and instructors, managing programs in process evaluation, and training performance in product evaluation. The factor which negatively influenced training satisfaction was human resources in input evaluation. On the other hand, the factors which positively influenced training recommendation were educational goal, assessing needs in context evaluation, interaction between learners and instructors, supporting programs in process evaluation, and training performance in product evaluation. The factor which negatively influenced training recommendation was assessing needs in context evaluation. The results of this study are expected to make an important contribution to the development of service training programs in airlines.

웹마이닝과 상품계층도를 이용한 협업필터링 기반 개인별 상품추천시스템

  • An, Do-Hyeon;Kim, Jae-Gyeong;Jo, Yun-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.510-514
    • /
    • 2004
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering is known to be the most successful recommendation technology, but its widespread use has exposed some problems such as sparsity and scalability in the e-business environment. In this paper, we propose a recommendation methodology based on Web usage mining and product taxonomy to enhance the recommendation quality and the system performance of original CF-based recommender systems. Web usage mining populates the rating database by tracking customers' shopping behaviors on the Web, so leading to better quality recommendations. The product taxonomy is used to improve the performance of searching for nearest neighbors through dimensionality reduction of the rating database. Several experiments on real e-commerce data show that the proposed methodology provides higher quality recommendations and better performance than original collaborative filtering methodology.

  • PDF

Application of Multidimensional Scaling Method for E-Commerce Personalized Recommendation (전자상거래 개인화 추천을 위한 다차원척도법의 활용)

  • Kim Jong U;Yu Gi Hyeon;Easley Robert F.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.93-97
    • /
    • 2002
  • In this paper, we propose personalized recommendation techniques based on multidimensional scaling (MDS) method for Business to Consumer Electronic Commerce. The multidimensional scaling method is traditionally used in marketing domain for analyzing customers' perceptional differences about brands and products. In this study, using purchase history data, customers in learning dataset are assigned to specific product categories, and after then using MDS a positioning map is generated to map product categories and alternative advertisements. The positioning map will be used to select personalized advertisement in real time situation. In this paper, we suggest the detail design of personalized recommendation method using MDS and compare with other approaches (random approach, collaborative filtering, and TOP3 approach)

  • PDF

Hybrid Product Recommendation for e-Commerce : A Clustering-based CF Algorithm

  • Ahn, Do-Hyun;Kim, Jae-Sik;Kim, Jae-Kyeong;Cho, Yoon-Ho
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.416-425
    • /
    • 2003
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering (CF) has been known to be the most successful recommendation technology. However its widespread use in e-commerce has exposed two research issues, sparsity and scalability. In this paper, we propose several hybrid recommender procedures based on web usage mining, clustering techniques and collaborative filtering to address these issues. Experimental evaluation of suggested procedures on real e-commerce data shows interesting relation between characteristics of procedures and diverse situations.

  • PDF

Multi-Purpose Hybrid Recommendation System on Artificial Intelligence to Improve Telemarketing Performance

  • Hyung Su Kim;Sangwon Lee
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.752-770
    • /
    • 2019
  • The purpose of this study is to incorporate telemarketing processes to improve telemarketing performance. For this application, we have attempted to mix the model of machine learning to extract potential customers with personalisation techniques to derive recommended products from actual contact. Most of traditional recommendation systems were mainly in ways such as collaborative filtering, which predicts items with a high likelihood of future purchase, based on existing purchase transactions or preferences for products. But, under these systems, new users or items added to the system do not have sufficient information, and generally cause problems such as a cold start that can not obtain satisfactory recommendation items. Also, indiscriminate telemarketing attempts can backfire as they increase the dissatisfaction and fatigue of customers who do not want to be contacted. To this purpose, this study presented a multi-purpose hybrid recommendation algorithm to achieve two goals: to select customers with high possibility of contact, and to recommend products to selected customers. In addition, we used subscription data from telemarketing agency that handles insurance products to derive realistic applicability of the proposed recommendation system. Our proposed recommendation system would certainly solve the cold start and scarcity problem of existing recommendation algorithm by using contents information such as customer master information and telemarketing history. Also. the model could show excellent performance not only in terms of overall performance but also in terms of the recommendation success rate of the unpopular product.