• Title/Summary/Keyword: Product Life-Cycle

Search Result 552, Processing Time 0.027 seconds

CRM 현황, 문제점 & 개선방안

  • 장남식
    • Proceedings of the CALSEC Conference
    • /
    • 2001.08a
    • /
    • pp.533-541
    • /
    • 2001
  • ㆍ모든 제품/서비스 선정 (Regardless of product/service life cycle) ㆍ모든 고객 대상 (Acquisition, Development, Retention) ㆍ고객에 대한 이해 불분명(개인고객, 채널, 법인고객...) ㆍIT에 대한 과다한 투자(Whole package)(중략)

  • PDF

A Study on the Estimation Analysis Methodology of the Optimum Economic Life-Span of Buildings (건축물의 최적 경제수명 추정분석 방법론에 관한 연구)

  • Choi, Jun-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.223-230
    • /
    • 2003
  • Generally, the life-span of a multi-housing complex is over 50 years, but in reality they are usually demolished after 20 years in spite of its remaining life expectancy. Thus, this research focuses on the estimation of the optimum economic life-span of a multi-housing complex. To estimate the minimum total cost point of start to finish of a multi-housing complex, we'll apply MAPI(Machinery and Allied Product Institute) and LCC(Life Cycle Cost) theory.

  • PDF

Life Cycle Assessment and Its Application (전과정 평가 기법과 활용)

  • Kim, Yong-Ki;Lee, Cheul-Kyu;Lee, Jae-Young
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.365-370
    • /
    • 2009
  • LCA is a tool to support for making decisions by offering information of environmental aspects of products or services. It can be used to make decisions to consumers and NGOs as well as government and enterprises. LCA evaluates the environmental aspects throughout the entire life cycle of a product. Therefore it can quantify and assess environmental impacts from raw material acquisition, manufacturing, distribution, use and disposal to end of life and recycling. The demands of the recycling rate increase and the use of suitable materials for RoHS, REACH, WEEE, ELV which are linked trade with environmental regulation have increased the worldwide. Global warming is the critical challenge of the world facing. And under post-Kyoto protocol each country has to prepare for target reduction, so it became essential to save energy and resources. In addition that, the carbon mark has been run as the way of showing example of CO2 reduction in domestic and it will be extended gradually. And also through the introduction of Eco-label, environmentally-friendly product will be promoted. When those systems are operated, global warming gases (i.e. CO2) can be calculated throughout the entire life of the products by LCA. And the environmental impacts such as harmful material emission in the process of manufacturing, energy consumption, distribution and so on, can also be assessed. Therefore, The basic concepts of LCA technique and various cases and the practical application in the future will be review in this study.

  • PDF

Economical selection of optimum pressurized hollow fiber membrane modules in water purification system using RbLCC

  • Lee, Chul-sung;Nam, Young-wook;Kim, Doo-il
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.137-147
    • /
    • 2017
  • A water treatment utility in South Korea operates a large system of pressurized hollow fiber membrane (PHFM) modules. The optimal selection of membrane module for the full scale plant was critical issue and carried out using Risk-based Life Cycle Cost (RbLCC) analysis based on the historical data of operation and maintenance. The RbLCC analysis was used in the process of decision-making for replacing aged modules. The initial purchasing cost and the value at risk during operation were considered together. The failure of modules occurs stochastically depending on the physical deterioration with usage over time. The life span of module was used as a factor for the failure of Poisson's probability model, which was used to obtain the probability of failure during the operation. The RbLCC was calculated by combining the initial cost and the value at risk without its warranty term. Additionally, the properties of membrane were considered to select the optimum product. Results showed that the module's life span in the system was ten years (120 month) with safety factor. The optimum product was selected from six candidates membrane for a full scale water treatment facility. This method could be used to make the optimum and rational decision for the operation of membrane water purification facility.

A Study on the Characteristics of Environmental Impact with the Seat Material of Electric Motor Unit (EMU) (전동차 의자의 재질에 따른 환경부하 특성에 관한 연구)

  • Lee, Jae-Young;Kim, Bo-Kyong;Chun, Yoon-Young;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.524-531
    • /
    • 2006
  • Environmental problem is one of important global issues. Transportations are main pollutant emission sources. Although railroad is stilt an environmental-friendly transportation, its environmental impact has been increased continuously. Especially, because a large amount of environmental impact is released from vehicles and facilities, it is necessary to assess and to reduce their environmental impact. Life cycle assessment (LCA) is a representative method which can evaluate environment impact through the whole life cycle of a product or a process. In this study, the environmental impact of seat in the electric motor unit (EMU) was analyzed quantitatively with its material using lift cycle assessment (LCA). As a result, the characteristics of environmental impact were investigated differently with the material of seat. Among ten impact categories, the seat with aluminum and FRP showed the highest ozone depletion (OD). On the other hand, in the seat with stainless steel and plastic, fresh water aquatic ecotoxicity (FAET) and marine water aquatic ecotoxicity (MAET) were high relatively. Therefore, the parts of EMU must be selected considering the characteristics of environmental impact in future.

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

Application for Uni-materialization and Life Cycle Assessment of the Vehicle Undercover (자동차 언더커버의 유니소재화 적용 및 전과정평가)

  • Yun, Hyeri;Park, Yoosung;Yu, MiJin;Bae, Hana;Lee, Hanwoong
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.256-269
    • /
    • 2017
  • In response to national and international regulations for resource circulation and to reduce greenhouse gas emissions, the automotive industry has tried to reuse scrap parts and defective products produced in the disposal or production stages as recycled resources. Attempts have been made to reach the target recycling rate by reducing the number of material types required for each part. Moreover, in order to achieve greenhouse gas reduction targets while maintaining the performance of existing products, lighter components are being developed. Existing products were 100% incinerated at the disposal stage, but the uni-materialized products were improved to be possible that it could be recycled 90% through scraps and the defective product in the pre-production and production stage. It also appears that the fuel efficiency improves through 56% lightweight compared to the existing product. In this paper, a preliminary assessment is conducted on the applicability of uni-materialized product development of car parts. The environmental impact values of existing products and developed prototypes are compared and analyzed through life cycle assessment.

A Study on the Life-Cycle Assessment and the Case Study for the Environmental Management (환경경영을 위한 전과정평가(LCA)의 고찰 및 사례 연구)

  • Lim, Jae-Hwa;Lee, Seok-Jun
    • Korean Business Review
    • /
    • v.18 no.1
    • /
    • pp.59-79
    • /
    • 2005
  • recently, world is progressing large quantity consumption with continuous Innovation and economic growth and pollution is accelerated at these process. Increase of industry activity and service that is point of corporation activity is discharging environmental pollutants at whole process to manufacture of end product and exhaust process from acquisition of raw material for accompanied product production hereupon. At the same time, being promoting resources consumption by that use much raw material, As a result, is becoming obstacle factors in sustainable development. So, corporation's responsibility for environmental protection is emphasized. Corporation which must prepare in green round or environmental problems should consider environmental effects that is happened over whole life of products that include waste treatment after raw material acquisition and use as well as selling end product simply. A Life Cycle Assessment techniques is normalized and standardized in International Standard Organization for technical committee 207(TC 207) world widely, and effort to apply in corporation's activity because mastering LCA techniques in domestic several corporations is undergone actively. Coming into effect of Kyoto's Protocol and International Organization for Standard 14000 series revision are presenting new survival principle in competition between country or corporation. LCA technique may become very useful means to corporation which wish to attempt environment management in real condition that awareness for environment is important. Also, An LCA to each product is going to cause big effects in corporation's whole image as well as competitive power raising for single product. Therefore, this research wishes to examine some instances for the future competitive product development at the estimation of environmental friendliness using LCA techniques and more theoretical considerations of the LCA techniques that can dominate corporation's fate.

  • PDF

Development of STEP Data Visualizer (STEP 데이타 Visualizer 개발)

  • Choi, Young;Park, Myung-Jin;Lee, Jong-Gab
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.567-571
    • /
    • 1996
  • The objective of STEP is to provide neutral mechanism capable of describing product data through the life cycle of a product, independent form any particular systems. This paper describes an STEP application program that can display the three-dimensional shape based on b-spline surface and the data which defines configuration of the product. The developed program is based on the STEP part 203 “Configuration controlled design”.

  • PDF

Product Cost Estimation using Integrated BOM in PDM (PDM 환경에서 통합BOM을 사용한 제품원가추정)

  • 백종건;임석철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.231-241
    • /
    • 1999
  • Recent market competition forces the price to be determined in the design stage so that the design would meet the target price of the product. However, most commercial PDM(Product Data Management) systems currently in use lack such a cost estimation function. In this paper, we propose detailed structure and functions of a new approach to estimate the cost of new products using integrated BOM in PDM. Such system will reduce the total life cycle cost of the products to be designed.

  • PDF