• Title/Summary/Keyword: Product Design and Development

Search Result 2,112, Processing Time 0.035 seconds

Development of a smart cane concept for guiding the visually impaired - focused on design thinking learning practices for students - (시각장애인을 위한 길 안내용 스마트 지팡이 콘셉트 개발)

  • Park, Hae Rim;Lee, Min Sun;Yang, Ho Jung
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.186-200
    • /
    • 2023
  • This study aims to improve the usability of the white cane, which is walking equipment that most local visually impaired people use and carry when going out, and to contribute to the prevention of safety accidents and the walking rights of visually impaired people by providing improvement and resolution measures for the problems identified. Also, this study is a study on the visually impaired, primarily targeting the 1st to 2nd degree visually impaired people, who cannot go out on their own without walking equipment such as a white cane, corresponding to 20% among approximately 250,000 blind and low vision people in the Korean population. In the study process, the concept has been developed from the user's point of view in order that the white cane becomes a real help in the walking step of the visually impaired and the improvement of usability of the white cane, the main walking equipment for the visually impaired, are done by problem identification through the Double Diamond Model of Design Thinking (Empathize → Define → Ideate → Prototype → Test (verify)). As a result of the investigation in the process of Empathy, a total of five issues was synthesized, including an increase in the proportion of the visually impaired people, an insufficient workforce situation to help all the visually impaired, an improvement and advancement of assistive devices essential for the visually impaired, problems of damage, illegal occupation, demolition, maintenance about braille blocks, making braille block paradigms for the visually impaired and for everyone. In Ideate and Prototype steps, situations derived from brainstorming were grouped and the relationship were made through the KJ method, and specific situations and major causes were organized to establish the direction of the concept. The derived solutions and major functions are defined in four categories, and representative situations requiring solutions and major functions are organized into two user scenarios. Ideas were visualized by arranging the virtual Persona and Customer Journey Map according to the situation and producing a prototype through 3D modeling. Finally, in the evaluation, the final concept derived is a device such a smart cane for guidance for the visually impaired as ① a smart cane emphasizing portability + ② compatibility with other electronic devices + ③ a product with safety and convenience.

Deduction and Verification of Optimal Factors for Stent Structure and Mechanical Reaction Using Finite Element Analysis (스텐트의 구조 및 기계적인 반응에 대한 최적인자 도출과 유한요소해석법을 통한 검증)

  • Jeon, Dong-Min;Jung, Won-Gyun;Kim, Han-Ki;Kim, Sang-Ho;Shin, Il-Gyun;Jang, Hong-Seok;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • Recently, along with technology development of endoscopic equipment, a stent has been developed for the convenience of operation, shortening of recovery times, and reduction of patient's pain. To this end, optimal factors are simulated for the stent structure and mechanical reaction and verified using finite element analysis. In order to compare to present commercialized product such as Zilver (Cook, Bloomington, Indiana, USA) and S.M.A.R.T (Cordis, Bridgewater Towsnhip, New Jersey, USA), mechanical impact factors were determined through Taguchi factor analysis, and flexibility and expandability of all the products including ours were tested using finite element analysis. Also, important factors were sought that fulfill the optimal condition using central composition method of response surface analysis, and optimal design were carried out based on the important factors. From the centra composition method of Response surface analysis, it is found that importat factors for flexibility is stent thickness (T) and unit area (W) and those for expandability is stent thickness (T). In results, important factors for optimum condition are 0.17 mm for stent thickness (T) and $0.09\;mm^2$ for unit area (W). Determined and verified by finite element analysis in out research institute, a stent was manufactured and tested with the results of better flexibility and expandability in optimal condition compared to other products. Recently, As Finite element analysis stent mechanical property assessment for research much proceed. But time and reduce expenses research rarely stent of optimum coditions. In this research, Important factor as mechanical impact factor stent Taguchi factor analysis arrangement to find flexibility with expansibility as Finite element analysis. Also, Using to Center composition method of Response surface method appropriate optimized condition searching for important factor, these considering had design optimized. Production stent time and reduce expenses was able to do the more coincide with optimum conditions. These kind of things as application plan industry of stent development period of time and reduce expenses etc. be of help to many economic development.

Applying QFD in the Development of Sensible Brassiere for Middle Aged Women (QFD(품질 기능 전개도)를 이용한 중년 여성의 감성 Brassiere 개발)

  • Kim Jeong-hwa;Hong Kyung-hi;Scheurell Diane M.
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.12 s.138
    • /
    • pp.1596-1604
    • /
    • 2004
  • Quality Function Deployment(QFD) is a product development tool which ensures that the voice of the customer needs is heard and translated into products. To develop a sensible brassiere for middle-aged women QFD was adopted. In this study the applicability and usefulness of QFD was examined through the engineering design process for a sensible brassiere for middle-aged women. The customer needs for the wear comfort of brassiere was made by one-on-one survey of 100 women who aged 30-40. The customer competitive assessment was generated by wearing tests of 10 commercial brassieres. The subjective assessment was conducted in the enviornmental chamber that was controlled at $28{\pm}1^{\circ}C,\;65{\pm}3\%RH.$ As a results, we developed twenty-one customer needs and corresponding HOWs for the wear comfort of brassiere. The Customer Competitive Assessment was generated by wearing tests of commercial brassiere. The subjective measurement scale and dimension for the evaluation of sensible brassiere were extracted from factor analysis. Four factors were fitting, aesthetic property, pressure sensation, displacement of brassiere due to movement. The most critical design parameter was wire-related property and second one was stretchability of main material of brassiere. Also, wearing comfort of brassiere was affected by the interaction of initial stretchability of wing and support of strap. Engineering design process, QFD was applicable to the development of technical and aesthetic brassieres.

Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions (각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발)

  • Ha, Sangjip;Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.55-78
    • /
    • 2021
  • Tosolve complex and diverse social problems and ensure the quality of life of individuals, social robots that can interact with humans are attracting attention. In the past, robots were recognized as beings that provide labor force as they put into industrial sites on behalf of humans. However, the concept of today's robot has been extended to social robots that coexist with humans and enable social interaction with the advent of Smart technology, which is considered an important driver in most industries. Specifically, there are service robots that respond to customers, the robots that have the purpose of edutainment, and the emotionalrobots that can interact with humans intimately. However, popularization of robots is not felt despite the current information environment in the modern ICT service environment and the 4th industrial revolution. Considering social interaction with users which is an important function of social robots, not only the technology of the robots but also other factors should be considered. The design elements of the robot are more important than other factors tomake consumers purchase essentially a social robot. In fact, existing studies on social robots are at the level of proposing "robot development methodology" or testing the effects provided by social robots to users in pieces. On the other hand, consumer emotions felt from the robot's appearance has an important influence in the process of forming user's perception, reasoning, evaluation and expectation. Furthermore, it can affect attitude toward robots and good feeling and performance reasoning, etc. Therefore, this study aims to verify the effect of appearance of social robot and consumer emotions on consumer's attitude toward social robot. At this time, a social robot design evaluation model is constructed by combining heterogeneous data from different sources. Specifically, the three quantitative indicator data for the appearance of social robots from the ABOT Database is included in the model. The consumer emotions of social robot design has been collected through (1) the existing design evaluation literature and (2) online buzzsuch as product reviews and blogs, (3) qualitative interviews for social robot design. Later, we collected the score of consumer emotions and attitudes toward various social robots through a large-scale consumer survey. First, we have derived the six major dimensions of consumer emotions for 23 pieces of detailed emotions through dimension reduction methodology. Then, statistical analysis was performed to verify the effect of derived consumer emotionson attitude toward social robots. Finally, the moderated regression analysis was performed to verify the effect of quantitatively collected indicators of social robot appearance on the relationship between consumer emotions and attitudes toward social robots. Interestingly, several significant moderation effects were identified, these effects are visualized with two-way interaction effect to interpret them from multidisciplinary perspectives. This study has theoretical contributions from the perspective of empirically verifying all stages from technical properties to consumer's emotion and attitudes toward social robots by linking the data from heterogeneous sources. It has practical significance that the result helps to develop the design guidelines based on consumer emotions in the design stage of social robot development.

DC Electric Field Characteristics considering Thermal Effect for HVDC Slip-on Type Outdoor Termination (HVDC 슬립 온형 기중 종단접속함에 대한 열 영향 반영 DC 전계 특성 평가)

  • Kwon, Ik-Soo;Hwang, Jae-Sang;Koo, Jae-Hong;Sakamoto, Kuniaki;Lee, Bang-Wook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • A outdoor termination installed at the outdoor substation is required to connect undergroud cables and overhead transmission lines. The joint box for AC transmission system is already developed and widely used to interconnect overhead and undergroud systems. But the development of the joint box for DC transmission system was only introduced from China and Japan, but theire developemnt staus and core technologies were not fully reported. In order to implement HVDC systems connecting ovehead transmission lines and undergroud cables, a outdoor termination should be developed, but the detailed specifications and information of this device were not reported. It is estimated that the development of the joint box for DC environment has some technical obstacles including insulating materials, electric field mitigation, thermal temperature rise, and space charge accumuations. Among this, the most important one is the DC elctrical insualtion design. Therefore, in order to investigate the DC elctrical insualton design of outdoor termination, the design of AC slip-on type outdoor termination is reffered, and DC electric field analysis performed to verify the possiblity of application of AC joint box into DC joint box. Especially for DC electric field analysis, temperature rise of insualting materials of a joint box was considered, because the conductivity of materials could be changed due to temperature rise. Furthermore, DC electric field analysis considering transinet state, and polarity reversal state were also investigated to verify which state is the most severe condition for the DC joint box. From the simualtion resulsts, it was shown that the value and the position of maximum electric field was obtained comparing AC state, DC state without temperaure rise, and DC state with temperaure rise. And it was confimred that severe DC electric field was observed considing temperaure rise. Finally, in order to reduce DC eletric field intensifation, different configuration of the joint box was applied and it was not possible to obtain satisfactory results. It means that the slight change of configuration of AC joint box was not the suitable soluton for DC joint box. It is essential to establish novel DC insulaton design skills and method for DC joint box to commercialze this product in the near future.

A Study on the Characteristics of Knitwear Fashion Design: With a focus on Missoni, Sonia Rykiel, Azzedine Alaia

  • Chun, Hei Jung;Park, Jae Min
    • International Journal of Costume and Fashion
    • /
    • v.13 no.1
    • /
    • pp.23-34
    • /
    • 2013
  • The purpose of this study is to better understand the development and characteristics of knitwear fashion design by examining the transformation process of the modern knits. The subjects of the study are Missoni, Sonia Rykiel, and Azzedine Alaia, designers who are world-renowned knit designers, and the expressive techniques in their designs will be evaluated. The study also intends to analyze the aesthetic value of each designer's style through their product's silhouette, colors, and knitting techniques. On the basis of the analysis, we hope to research the factors in the designing process that will allow knits, which were made for practical purposes, to be valued as a luxury fashion item, and with the results, show the potential for knits in expanding its domain in fashion to become a more luxurious, creative fashion item. The characteristic comparison of the designers is as follows: First, in the case of colors, Missoni shows its distinct identity through a balance of splashy colors as well as nature-inspired color composition and balance. And, only with color use, is also able to express perspective, form composition, and rhythm. Sonia Rykiel designs are composed of black backgrounds with strong primary colors that are contrasted with one-point or stripes to express a light, urban image. Alaia emphasizes femininity by the use of black and white colors, which show modernity, in combination with neutral skin-toned colors, such as beige and gray. So, in other words, Missoni and Sonia Rykiel mixed colors for visual interconnectivity, while Alaia expressed femininity through the use of an achromatic color. Second, in the case of knitting techniques, Missoni uses the jacquard technique to make complex patterns that show balance of colors and patterns such as zigzag, stripe, geometries, and titan check, which are geometric, abstract, and symmetric. Sonia Rykiel who uses stripes as her trademark, most often utilizes the intarsia technique, which is expressed through one-point. Alaia combines diverse techniques, such as the Skashi weaving, by using computerized knitting. Third, as for silhouettes, Missoni eliminated exaggerated details in order to emphasize the flashy colors and delicate patterns and weavings of its designs, and this resulted in simplistic and relaxed silhouettes. Sonia Rykiel took advantage of the elasticity that the knit offers to get a tight silhouette, and in turn, emphasized the female sensuality. Alaia used curvilinear cuts that emphasized the womanly curves and gained an image considered soft and feminine.

Specifying the Characteristics of Tangible User Interface: centered on the Science Museum Installation (실물형 인터렉션 디자인 특성 분석: 과학관 체험 전시물을 대상으로)

  • Cho, Myung Eun;Oh, Myung Won;Kim, Mi Jeong
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.553-564
    • /
    • 2012
  • Tangible user interfaces have been developed in the area of Human-Computer Interaction for the last decades, however, the applied domains recently have been extended into the product design and interactive art. Tangible User Interfaces are the combination of digital information and physical objects or environments, thus they provide tangible and intuitive interaction as input and output devices, often combined with Augmented Reality. The research developed a design guideline for tangible user interfaces based on key properties of tangible user interfaces defined previously in five representative research: Tangible Interaction, Intuitiveness and Convenience, Expressive Representation, Context-aware and Spatial Interaction, and Social Interaction. Using the guideline emphasizing user interaction, this research evaluated installation in a science museum in terms of the applied characteristics of tangible user interfaces. The selected 15 installations which were evaluated are to educate visitors for science by emphasizing manipulation and experience of interfaces in those installations. According to the input devices, they are categorized into four Types. TUI properties in Type 3 installation, which uses body motions for interaction, shows the highest score, where items for context-aware and spatial interaction were highly rated. The context-aware and spatial interaction have been recently emphasized as extended properties of tangible user interfaces. The major type of installation in the science museum is equipped with buttons and joysticks for physical manipulation, thus multimodal interfaces utilizing visual, aural, tactile senses etc need to be developed to provide more innovative interaction. Further, more installation need to be reconfigurable for embodied interaction between users and the interactive space. The proposed design guideline can specify the characteristics of tangible user interfaces, thus this research can be a basis for the development and application of installation involving more TUI properties in future.

  • PDF

An Exploratory Study on the Status of and Demand for Higher Education Programs in Fashion in Myanmar (미얀마의 패션 고등교육 현황과 수요에 대한 탐색적 연구)

  • Kang, Min-Kyung;Jin, Byoungho Ellie;Cho, Ahra;Lee, Hyojeong;Lee, Jaeil;Lee, Yoon-Jung
    • Journal of Korean Home Economics Education Association
    • /
    • v.34 no.3
    • /
    • pp.1-23
    • /
    • 2022
  • This study examined the perceptions of Myanmar university students and professors regarding the status and necessity of higher education programs in fashion. Data were collected from professors in textile engineering at Yangon Technological University and Myanmar university students. Closed- and open-ended questions were asked either through interviews or by email. The responses were analyzed using keyword extraction and categorization, and descriptive statistics(closed questions). Generally, the professors perceived higher education, as well as the cultural industries including art and fashion, as important for Myanmar's social and economic development. According to the students interests in pursuing a degree in textile were limited, despite the high interest in fashion. Low wages in the apparel industry and lack of fashion degrees that meet the demand of students were cited as reasons. The demand was high for educational programs in fashion product development, fashion design, pattern-making, fashion marketing, branding, management, costume history, and cultural studies. Students expected to find their future career in textiles and clothing factories. Many students wanted to be hired by global fashion brands for higher salaries and training for advanced knowledge and technical skills. They perceived advanced fashion education programs will have various positive effects on Myanmar's national economy.

The Future of NVH Research - A Challenge by New Powertrains

  • Genuit, Ing. K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.48-48
    • /
    • 2010
  • Sound quality and NVH-issues(Noise, Vibration and Harshness) of vehicles has become very important for car manufacturers. It is interpreted as among the most relevant factors regarding perceived product quality, and is important in gaining market advantage. The general sound quality of vehicles was gradually improved over the years. However, today the development cycles in the automotive industry are constantly reduced to meet the customers' demands and to react quickly to market needs. In addition, new drive and fuel concepts, tightened ecological specifications, increase of vehicle classes and increasing diversification(increasing market for niche vehicles), etc. challenge the acoustic engineers trying to develop a pleasant, adequate, harmonious passenger cabin sound. Another aspect concerns the general pressure for reducing emission and fuel consumption, which lead to vehicle weight reductions through material changes also resulting in new noise and vibration conflicts. Furthermore, in the context of alternative powertrains and engine concepts, the new objective is to detect and implement the vehicle sound, tailored to suit the auditory expectations and needs of the target group. New questions must be answered: What are appropriate sounds for hybrid or electric vehicles? How are new vehicle sounds perceived and judged? How can customer-oriented, client-specific target sounds be determined? Which sounds are needed to fulfil the driving task, and so on? Thus, advanced methods and tools are necessary which cope with the increasing complexity of NVH-problems and conflicts and at the same time which cope with the growing expectations regarding the acoustical comfort. Moreover, it is exceedingly important to have already detailed and reliable information about NVH-issues in early design phases to guarantee high quality standards. This requires the use of sophisticated simulation techniques, which allow for the virtual construction and testing of subsystems and/or the whole car in early development stages. The virtual, testing is very important especially with respect to alternative drive concepts(hybrid cars, electric cars, hydrogen fuel cell cars), where complete new NVH-problems and challenges occur which have to be adequately managed right from the beginning. In this context, it is important to mention that the challenge is that all noise contributions from different sources lead to a harmonious, well-balanced overall sound. The optimization of single sources alone does not automatically result in an ideal overall vehicle sound. The paper highlights modern and innovative NVH measurement technologies as well as presents solutions of recent NVH tasks and challenges. Furthermore, future prospects and developments in the field of automotive acoustics are considered and discussed.

  • PDF

Optimal Cultivation Time for Yeast and Lactic Acid Bacteria in Fermented Milk and Effects of Fermented Soybean Meal on Rumen Degradability Using Nylon Bag Technique

  • Polyorach, S.;Poungchompu, O.;Wanapat, M.;Kang, S.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1273-1279
    • /
    • 2016
  • The objectives of this study were to determine an optimal cultivation time for populations of yeast and lactic acid bacteria (LAB) co-cultured in fermented milk and effects of soybean meal fermented milk (SBMFM) supplementation on rumen degradability in beef cattle using nylon bag technique. The study on an optimal cultivation time for yeast and LAB growth in fermented milk was determined at 0, 4, 8, 24, 48, 72, and 96 h post-cultivation. After fermenting for 4 days, an optimal cultivation time of yeast and LAB in fermented milk was selected and used for making the SBMFM product to study nylon bag technique. Two ruminal fistulated beef cattle ($410{\pm}10kg$) were used to study on the effect of SBMFM supplementation (0%, 3%, and 5% of total concentrate substrate) on rumen degradability using in situ method at incubation times of 0, 2, 4, 6, 12, 24, 48, and 72 h according to a Completely randomized design. The results revealed that the highest yeast and LAB population culture in fermented milk was found at 72 h-post cultivation. From in situ study, the soluble fractions at time zero (a), potential degradability (a+b) and effective degradability of dry matter (EDDM) linearly (p<0.01) increased with the increasing supplemental levels and the highest was in the 5% SBMFM supplemented group. However, there was no effect of SBMFM supplement on insoluble degradability fractions (b) and rate of degradation (c). In conclusion, the optimal fermented time for fermented milk with yeast and LAB was at 72 h-post cultivation and supplementation of SBMFM at 5% of total concentrate substrate could improve rumen degradability of beef cattle. However, further research on effect of SBMFM on rumen ecology and production performance in meat and milk should be conducted using in vivo both digestion and feeding trials.