• Title/Summary/Keyword: Product Design Performance Evaluation

Search Result 139, Processing Time 0.028 seconds

Performance Evaluation of High Pressure and High Pressure Drop Control Valve for Offshore Plants (해양플랜트용 고압·고차압 제어밸브의 성능 평가)

  • Kim, Kyuchul;Lee, Chiwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.767-773
    • /
    • 2013
  • A high-pressure, high-pressure drop control valve, which transforms the power transfer of a system by reducing the inlet pressure of 345bartothe outlet pressure of 112bar, is a fundamental component in an offshore plant process. With the increasingly growing market share of the maritime industry, this valve has been expected to be a high-value-added product. This study not only analyzes the relation between pressure drop and fluid velocity in a trim by using fluid analysis, but also examines the possibility of cavitation in a valve in addition to the plot for the extension of lifespan. Based on the analysis results, the design and production method of the valve are established, and accordingly, performance evaluation is carried out. It is demonstrated that the pressure drop from 345bar to 112bar is more feasible in the presence of the trim, which can induce a continuous and diminutive pressure drop in order to prevent cavitation in a high-pressure drop control valve. Furthermore, despite the fluid velocity near a seatring being found to be over 30m/s, the lifespan of the valve is determined to be adequate considering the operation condition of a prototype valve of 80%.

Test and Evaluation Procedure of Foam Core Materials for Composite Ships

  • Jang, Jae-Won;Jeong, Sookhyun;Oh, Daekyun;Cho, Je-Hyoung;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.286-296
    • /
    • 2020
  • Sandwich structures are general-purpose structures that can reduce the structural weight of composite ships. Core materials are essential for these structures, with polyvinyl chloride (PVC) foams being the most popular. These foam core materials are subjected to various tests in the development process, and must satisfy the performance requirements of several ISO and ASTM standards. Therefore, a procedure for evaluating the performance of foam core materials was proposed in this paper. In addition, prototypes were fabricated using a commercial PVC foam core product in accordance with the structural design of an 11 m fiber-reinforced plastic yacht. Then, a case study was conducted on the proposed evaluation procedure. The proposed procedure facilitates the understanding of the performance requirements and evaluation of core materials used in composite ships and is expected to be utilized in developing core materials for marine structures.

Living Lab and Confusion Matrix for Performance Improvement and Evaluation of Artificial Intelligence System in Life Environment (생활 환경에서의 인공지능 시스템 성능 개선 및 평가를 위한 리빙랩 및 혼동 매트릭스)

  • Ha, Ji-Won;Seo, Ji-Seok;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1180-1183
    • /
    • 2020
  • Recently, the daily life safety detection functionalities such as fall accident detection and burn danger detection are widely disseminated along with the development of IoT and smart home. These safety detection functionalities are mostly performed by artificial intelligence. However, simple accuracy measurement of the safety detection in laboratory environment is often far from practical performance in daily life environment. To mitigate this problem, this paper introduces two techniques, i.e. living lab and confusion matrix. Living lab is more than simple simulation of daily life environment, and it enables users to directly participate technology development and product design. Various performance measures induced from confusion matrix significantly help to evaluate the performance of artificial intelligence system for proper application purposes.

A Design Creation Method for Ship Configuration based on the Aesthetic Cognitive Theory

  • Shinoda, Takeshi;Fukuchi, Nobuyoshi
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.14-26
    • /
    • 2001
  • The shape of an industrial product has to be determined within the constrained conditions of keeping firmly many kinds of functional and performance requirements. On the other hand, the configuration of artistic work would be created desirably using the sense of aesthetics, even if conflicting slightly with these requirements. The development of a methodology for an aesthetic design founded on human sensitivity is becoming highly desirable in recent years. In this paper, a method of measuring beauty quantitatively for an artistic evaluation if proposed using the aesthetic cognitive theory and the optimum configuration could be found by a search using the genetic algorithm. Furthermore, an expression of optimum ship appearance can be gained as graphics.

  • PDF

Design Development Process for Clothing of Upper Limb Assistive Wearable Soft Robot (상지 보조 소프트로봇의 의복화를 위한 디자인 개발 프로세스)

  • Hong, Yuhwa;Park, Juyeon;Nam, Yun Ja;Park, Daegeun;Cho, Kyu-Jin;Kim, Youn Joo
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.106-117
    • /
    • 2021
  • This study proposes a design process for an upper limb assistive wearable soft robot that will enable the development of a clothing product for an upper limb assistive soft robot. A soft robot made of a flexible and soft material that compensates for the shortcomings of existing upper limb muscle strength assistive devices is being developed. Consequently, a clothing process of the upper limb assistive soft robot is required to increase the possibility of wearing such a device. The design process of the upper limb auxiliary soft robot is presented as follows. User analysis and required performance deduction-Soft robot design-upper limb assistive wearable soft robot prototype design and production-evaluation. After designing the clothing according to the design process, the design was revised and supplemented repeatedly according to the results of the clothing evaluation. In the post-production evaluation stage, the first and second prototypes were attached to actual subjects, and the second prototype showed better results. The developed soft robot evaluated if the functionality as a clothing function and the functionality as the utility of the device were harmonized. The convergence study utilized a process of reducing friction conducted through an understanding and cooperation between research fields. The results of this study can be used as basic data to establish the direction of prototype development in fusion research.

A Design and Implement of Efficient Agricultural Product Price Prediction Model

  • Im, Jung-Ju;Kim, Tae-Wan;Lim, Ji-Seoup;Kim, Jun-Ho;Yoo, Tae-Yong;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.29-36
    • /
    • 2022
  • In this paper, we propose an efficient agricultural products price prediction model based on dataset which provided in DACON. This model is XGBoost and CatBoost, and as an algorithm of the Gradient Boosting series, the average accuracy and execution time are superior to the existing Logistic Regression and Random Forest. Based on these advantages, we design a machine learning model that predicts prices 1 week, 2 weeks, and 4 weeks from the previous prices of agricultural products. The XGBoost model can derive the best performance by adjusting hyperparameters using the XGBoost Regressor library, which is a regression model. The implemented model is verified using the API provided by DACON, and performance evaluation is performed for each model. Because XGBoost conducts its own overfitting regulation, it derives excellent performance despite a small dataset, but it was found that the performance was lower than LGBM in terms of temporal performance such as learning time and prediction time.

An Assessment of Technological Competitiveness in Core Products of Foreign Design & Construction markets (해외 유망 건설상품의 기술 경쟁력 평가)

  • Choi, Seok-In;Kim, Sang-Bum;Lee, Young-Whan;Kim, Woo-Young;Jang, Hyoun-Seung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.1
    • /
    • pp.107-117
    • /
    • 2008
  • In this study, surveys and interviews are used to evaluate technological competitiveness of each product with respect to that of foreign leading firms, for seven leading domestic construction products which have been determined to have competitive edge in offshore markets, Such evaluation provides a more in depth study than previously conducted research, and is meaningful in that corporate level, rather than industry level, perspective is projected. Major findings of such evaluations are the following. First, as expected, it has been evaluated that domestic technological competitiveness in desalination plant and power plant has reached the point where it can compete with foreign leading firms. Moreover, a noteworthy result of the evaluation is that development program sector, including urban development of satellite cities, has reached considerable level of competitiveness in offshore market. In the case of the development market, domestic firms have accumulated sufficient experience in domestic market and engineering technology is not a decisive factor as in plant sector, and these factors lead to such an evaluation. Second, in the cases of gas, oil refinery and petro-chemical plants, domestic products' technological competitiveness that can contest in offshore market is still centered around production and construction. On the other hand, there are still weaknesses in license technology and basic design capabilities, which constitute the "value added" area. Third, skyscrapers, a promising product in offshore construction market and a product group which domestic firms have much performance record and projects in progress both in domestic and offshore markets, are considered. While direct comparison between skyscrapers and plant sector is not feasible, with the exception of production and construction, overall domestic capability in this sector has been assessed to be the lowest amongst those products that were surveyed. Fourth, it has been indicated that competitiveness is relatively higher in common technology than in key technology. In project management capability, it has been assessed that there are weaknesses in procedure document area. Also, a characteristic is the point that low overall assessments have been given across all product groups for corporate and management areas, not technological areas. Especially, financing, contracting/claim, risk management and investment on research and development received low evaluations. Fifth, it has been assessed that overall corporate and governmental supports are weak. This result is especially evident for corporate management and support areas across all product groups surveyed.

Durability Evaluation of Platform Safety Step System (승강장 안전발판 시스템의 내구성 평가)

  • Park, Min Heung;Kwak, Hee Man;Kim, Min Ho
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.125-133
    • /
    • 2016
  • Purpose: The purpose of this study is to evaluate durability of platform safety step system in railway. Method: We performed finite element analysis & durability analysis of platform safety step system with VPD (Virtual Product Development) techniques and examined the durability standard & qualification life through the rig test during no failure test time in reliability qualification test. We continued to test 1 million cycles in KRS (Korea Railway Standard) for system's robust design performance. Result: FEM analysis results are 14.9MPa & 14.7MPa of pin-joint, pivot and durability analysis result is above 1 million cycles. we calculated theoretically no failure test time 855,000 cycles and through the 1 million cycles durability rig test in KRS standard we confirmed product quality. Conclusion: This platform safety step system was designed very safe in terms of a mechanical strength & durability.

Design Considerations of Auditory Feedback for Enhancing The Usability of Portable Digital Electronic Products (휴대용 디지털 전자제품의 사용성 향상을 위한 청각적 피드백의 고려)

  • Kim, Hyeong-Seok;Park, Min-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-60
    • /
    • 2000
  • Non-verbal sound feedback, called earcon, has been used for portable digital electronic products to give appropriate information for the selected function. This study evaluated usability based on user cognition time, error rate, and subjective satisfaction using 20 male and female subjects. The study compared five major user functions from a portable digital electronic product with currently available earcons and the same functions from the product with the new earcons (suggested by this study) which considered user cognitive characteristics, such as loudness, pitch, melody, and length. For subjective evaluation, the study assessed various earcons by subjective impression of sounds using the seven-point rating scales. Major statistical results indicated that the new earcons significantly reduced user error rates and generally improved user performance functions, such as 'play, off, stop, fast forward, and rewind.'

  • PDF

Study for the Reliability Evaluation of a Volute Pump (벌류트 펌프의 신뢰성 평가에 관한 연구)

  • Jung, Dong Soo;Lee, Yong Bum;Kang, Bo Sik
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.23-29
    • /
    • 2018
  • The objective of this paper is to evaluate the reliability of a volute pump and presents test results through performance and life tests. The performance and life test methods were presented by analyzing the failure modes of the volute pump. Zero failure test time was calculated to evaluate the reliability of the volute pump and then, the test was performed under accelerated conditions. The test was also carried out to check the failure modes of the field conditions. This study can be provided to improve the product reliability through failure analysis of the volute pump. And failure cause of typical failure case has been investigated and improvement design has been presented. The performance test results of before and after the accelerated life test were presented to confirm the improved reliability of the volute pump.